A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media - Institut mécanique des fluides de Toulouse Accéder directement au contenu
Article Dans Une Revue International Journal of Heat and Mass Transfer Année : 2013

A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media

Résumé

This work aims to model turbulent flows in media laden with solid structures according to porous media approach. A complete set of macroscopic transport equations is derived by spatially averaging the Reynolds averaged governing equations. A two-scale analysis highlights energy transfers between macroscopic and sub-filter kinetic energies (dispersive and turbulent kinetic energies). Additional terms coming from the averaging procedure and representing solids/fluid interactions and turbulent contributions are modeled. Connections between turbulence modeling and dispersion modeling are presented. Other closure expressions are determined using physical considerations and spatial averaging of microscopic computations. A special care is given to the calibration methodology for the phenomenological coefficients. Results of the present model are successfully compared to volume-averaged reference results coming from fine scale computations and show significant improvements with respect to previous macroscopic models.
Fichier principal
Vignette du fichier
Drouin_11035l.pdf (1.05 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00952032 , version 1 (26-02-2014)

Identifiants

Citer

Marie Drouin, Olivier Grégoire, Olivier Simonin. A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media. International Journal of Heat and Mass Transfer, 2013, vol. 63, pp. 401-413. ⟨10.1016/j.ijheatmasstransfer.2013.03.060⟩. ⟨hal-00952032⟩
159 Consultations
262 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More