On the Effect of Connectedness for Biobjective Multiple and Long Path Problems - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Communication Dans Un Congrès Année : 2011

On the Effect of Connectedness for Biobjective Multiple and Long Path Problems

Résumé

Recently, the property of connectedness has been claimed to give a strong motivation on the design of local search techniques for multiobjective combinatorial optimization (MOCO). Indeed, when connectedness holds, a basic Pareto local search, initialized with at least one non-dominated solution, allows to identify the efficient set exhaustively. However, this becomes quickly infeasible in practice as the number of efficient solutions typically grows exponentially with the instance size. As a consequence, we generally have to deal with a limited-size approximation, where a good sample set has to be found. In this paper, we propose the biobjective multiple and long path problems to show experimentally that, on the first problems, even if the efficient set is connected, a local search may be outperformed by a simple evolutionary algorithm in the sampling of the efficient set. At the opposite, on the second problems, a local search algorithm may successfully approximate a disconnected efficient set. Then, we argue that connectedness is not the single property to study for the design of local search heuristics for MOCO. This work opens new discussions on a proper definition of the multiobjective fitness landscape.
Fichier principal
Vignette du fichier
verel.pdf (162.46 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00550353 , version 1 (18-07-2012)

Identifiants

Citer

Sébastien Verel, Arnaud Liefooghe, Jérémie Humeau, Laetitia Jourdan, Clarisse Dhaenens. On the Effect of Connectedness for Biobjective Multiple and Long Path Problems. Learning and Intelligent OptimizatioN Conference (LION 5), Jan 2011, Rome, Italy. pp.31--45. ⟨hal-00550353⟩
325 Consultations
201 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More