A tight bound for the Delaunay triangulation of points on a polyhedron

Nina Amenta 1 Dominique Attali 2, * Olivier Devillers 3
* Corresponding author
2 GIPSA-AGPIG - AGPIG
GIPSA-DIS - Département Images et Signal
3 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We show that the Delaunay triangulation of a set of $n$ points distributed nearly uniformly on a $p$-dimensional polyhedron (not necessarily convex) in $d$-dimensional Euclidean space is $O(n^{\frac{d-k+1}{p}})$, where $k = \lceil \frac{d+1}{p+1} \rceil$. This bound is tight in the worst case, and improves on the prior upper bound for most values of $p$.
Document type :
Journal articles
Complete list of metadatas

Cited literature [11 references]  Display  Hide  Download


https://hal.archives-ouvertes.fr/hal-00784900
Contributor : Dominique Attali <>
Submitted on : Monday, February 4, 2013 - 10:36:09 PM
Last modification on : Wednesday, August 7, 2019 - 12:19:20 PM
Long-term archiving on: Monday, June 17, 2013 - 7:10:42 PM

Files

2012-dcg-size-delaunay.pdf
Files produced by the author(s)

Identifiers

Citation

Nina Amenta, Dominique Attali, Olivier Devillers. A tight bound for the Delaunay triangulation of points on a polyhedron. Discrete and Computational Geometry, Springer Verlag, 2012, 48 (1), pp.19-38. ⟨10.1007/s00454-012-9415-7⟩. ⟨hal-00784900⟩

Share

Metrics

Record views

1176

Files downloads

408