Skip to Main content Skip to Navigation

The Stability of Delaunay Triangulations

Jean-Daniel Boissonnat 1 Ramsay Dyer 1, * Arijit Ghosh 2
* Corresponding author
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $\delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulations under perturbations of the metric and of the vertex positions. We quantify the magnitude of the perturbations under which the Delaunay triangulation remains unchanged.
Document type :
Complete list of metadata

Cited literature [19 references]  Display  Hide  Download
Contributor : Ramsay Dyer Connect in order to contact the contributor
Submitted on : Tuesday, April 2, 2013 - 7:32:14 PM
Last modification on : Thursday, January 20, 2022 - 4:14:38 PM
Long-term archiving on: : Sunday, April 2, 2017 - 11:30:17 PM


Files produced by the author(s)


  • HAL Id : hal-00807050, version 1
  • ARXIV : 1304.2947



Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh. The Stability of Delaunay Triangulations. [Research Report] RR-8276, INRIA. 2013, pp.29. ⟨hal-00807050⟩



Les métriques sont temporairement indisponibles