On Shapley value for measuring importance of dependent inputs - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2017

On Shapley value for measuring importance of dependent inputs

Résumé

This paper makes the case for using Shapley value to quantify the importance of random input variables to a function. Alternatives based on the ANOVA decomposition can run into conceptual and computational problems when the input variables are dependent. Our main goal here is to show that Shapley value removes the conceptual problems. We do this with some simple examples where Shapley value leads to intuitively reasonable nearly closed form values.
Fichier principal
Vignette du fichier
shapleydependentR1bettergaus.pdf (321.43 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01379188 , version 1 (11-10-2016)
hal-01379188 , version 2 (15-03-2017)
hal-01379188 , version 3 (21-03-2017)

Identifiants

Citer

Art B Owen, Clémentine Prieur. On Shapley value for measuring importance of dependent inputs. SIAM/ASA Journal on Uncertainty Quantification, 2017, 51 (1), pp.986-1002. ⟨10.1137/16M1097717⟩. ⟨hal-01379188v3⟩
652 Consultations
725 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More