The 2016 Signal Separation Evaluation Campaign

Antoine Liutkus 1 Fabian Robert-Stöter 2 Zafar Rafii 3 Daichi Kitamura 4 Bertrand Rivet 5 Nobutaka Ito 6 Nobutaka Ono 7 Julie Fontecave 8
1 MULTISPEECH - Speech Modeling for Facilitating Oral-Based Communication
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
5 GIPSA-VIBS - VIBS
GIPSA-DIS - Département Images et Signal, GIPSA-PSD - GIPSA Pôle Sciences des Données
8 TIMC-IMAG-PRETA - Physiologie cardio-Respiratoire Expérimentale Théorique et Appliquée
TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525
Abstract : In this paper, we report the results of the 2016 community-based Signal Separation Evaluation Campaign (SiSEC 2016). This edition comprises four tasks. Three focus on the separation of speech and music audio recordings, while one concerns biomedical signals. We summarize these tasks and the performance of the submitted systems, as well as provide a small discussion concerning future trends of SiSEC.
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/hal-01472932
Contributor : Antoine Liutkus <>
Submitted on : Tuesday, February 21, 2017 - 2:54:06 PM
Last modification on : Friday, January 10, 2020 - 11:42:08 AM
Long-term archiving on: Monday, May 22, 2017 - 3:46:02 PM

File

SiSEC2016report.pdf
Files produced by the author(s)

Identifiers

Citation

Antoine Liutkus, Fabian Robert-Stöter, Zafar Rafii, Daichi Kitamura, Bertrand Rivet, et al.. The 2016 Signal Separation Evaluation Campaign. 13th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2017), Feb 2017, Grenoble, France. pp.323 - 332, ⟨10.1007/978-3-319-53547-0_31⟩. ⟨hal-01472932⟩

Share

Metrics

Record views

1135

Files downloads

1726