The Kalai-Smorodinski solution for many-objective Bayesian optimization - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Article Dans Une Revue (Article De Synthèse) Journal of Machine Learning Research Année : 2020

The Kalai-Smorodinski solution for many-objective Bayesian optimization

Résumé

An ongoing aim of research in multiobjective Bayesian optimization is to extend its applicability to a large number of objectives. While coping with a limited budget of evaluations, recovering the set of optimal compromise solutions generally requires numerous observations and is less interpretable since this set tends to grow larger with the number of objectives. We thus propose to focus on a specific solution originating from game theory, the Kalai-Smorodinsky solution, which possesses attractive properties. In particular, it ensures equal marginal gains over all objectives. We further make it insensitive to a monotonic transformation of the objectives by considering the objectives in the copula space. A novel tailored algorithm is proposed to search for the solution, in the form of a Bayesian optimization algorithm: sequential sampling decisions are made based on acquisition functions that derive from an instrumental Gaussian process prior. Our approach is tested on four problems with respectively four, six, eight, and nine objectives. The method is available in the Rpackage GPGame available on CRAN at https://cran.r-project.org/package=GPGame.
Fichier principal
Vignette du fichier
ks_arxiv_v3.pdf (3.02 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01656393 , version 1 (05-12-2017)
hal-01656393 , version 2 (18-02-2019)
hal-01656393 , version 3 (02-10-2019)

Identifiants

  • HAL Id : hal-01656393 , version 3
  • ARXIV : 1902.06565
  • WOS : 000570113800001

Citer

Mickaël Binois, Victor Picheny, Patrick Taillandier, Abderrahmane Habbal. The Kalai-Smorodinski solution for many-objective Bayesian optimization. Journal of Machine Learning Research, 2020, 21 (150), pp.1-42. ⟨hal-01656393v3⟩
407 Consultations
395 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More