3Departament de Matemàtica Aplicada II (Universitat Politècnica de Catalunya (UPC) Edifici Omega, Campus Nord Jordi Girona, 1-3 E-08034 Barcelona Spain - Spain)
Abstract : Computing the Delaunay triangulation of n points requires usually a minimum of Omega(n log n) operations, but in some special cases where some additional knowledge is provided, faster algorithms can be designed. Given two sets of points, we prove that, if the Delaunay triangulation of all the points is known, the Delaunay triangulation of each set can be computed in randomized expected linear time.
https://hal.inria.fr/inria-00090664
Contributor : Olivier Devillers <>
Submitted on : Friday, September 1, 2006 - 4:02:18 PM Last modification on : Monday, November 16, 2020 - 3:56:03 PM Long-term archiving on: : Tuesday, April 6, 2010 - 12:44:03 AM
Bernard Chazelle, Olivier Devillers, Ferran Hurtado, Mercè Mora, Vera Sacristan, et al.. Splitting a Delaunay Triangulation in Linear Time. Algorithmica, Springer Verlag, 2002, 34 (1), pp.39--46. ⟨10.1007/s00453-002-0939-8⟩. ⟨inria-00090664⟩