Convergence and stability of a high-order leap-frog based discontinuous Galerkin method for the Maxwell equations on non-conforming meshes - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Rapport (Rapport De Recherche) Année : 2008

Convergence and stability of a high-order leap-frog based discontinuous Galerkin method for the Maxwell equations on non-conforming meshes

Résumé

In this work, we discuss the formulation, stability, convergence and numerical validation of a high-order leap-frog based non-dissipative discontinuous Galerkin time-domain (DGTD) method for solving Maxwell's equations on non-conforming simplicial meshes. This DGTD method makes use of a nodal polynomial interpolation method for the approximation of the electromagnetic field within a simplex, and of a centered scheme for the calculation of the numerical flux at an interface between neighboring elements. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable and conserves a discrete analog of the electromagnetic energy for metallic cavities. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high-order elements show the potential of the method.
Fichier principal
Vignette du fichier
RR-6699.pdf (1.22 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inria-00332277 , version 1 (20-10-2008)

Identifiants

  • HAL Id : inria-00332277 , version 1

Citer

Hassan Fahs, Stephane Lanteri. Convergence and stability of a high-order leap-frog based discontinuous Galerkin method for the Maxwell equations on non-conforming meshes. [Research Report] RR-6699, INRIA. 2008, pp.27. ⟨inria-00332277⟩
220 Consultations
365 Téléchargements

Partager

Gmail Facebook X LinkedIn More