Random polynomials and expected complexity of bisection methods for real solving - INRIA - Institut National de Recherche en Informatique et en Automatique Accéder directement au contenu
Communication Dans Un Congrès Année : 2010

Random polynomials and expected complexity of bisection methods for real solving

Résumé

Our probabilistic analysis sheds light to the following questions: Why do random polynomials seem to have few, and well separated real roots, on the average? Why do exact algorithms for real root isolation may perform comparatively well or even better than numerical ones? We exploit results by Kac, and by Edelman and Kostlan in order to estimate the real root separation of degree $d$ polynomials with i.i.d.\ coefficients that follow two zero-mean normal distributions: for $SO(2)$ polynomials, the $i$-th coefficient has variance ${d \choose i}$, whereas for Weyl polynomials its variance is ${1/i!}$. By applying results from statistical physics, we obtain the expected (bit) complexity of \func{sturm} solver, $\sOB(r d^2 \tau)$, where $r$ is the number of real roots and $\tau$ the maximum coefficient bitsize. Our bounds are two orders of magnitude tighter than the record worst case ones. We also derive an output-sensitive bound in the worst case. The second part of the paper shows that the expected number of real roots of a degree $d$ polynomial in the Bernstein basis is $\sqrt{2d}\pm\OO(1)$, when the coefficients are i.i.d.\ variables with moderate standard deviation. Our paper concludes with experimental results which corroborate our analysis.
Fichier principal
Vignette du fichier
egt-issac-10.pdf (275.85 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inria-00482722 , version 1 (11-05-2010)
inria-00482722 , version 2 (12-05-2010)

Identifiants

Citer

Ioannis Z. Emiris, André Galligo, Elias Tsigaridas. Random polynomials and expected complexity of bisection methods for real solving. ISSAC, Jul 2010, Munich, Germany. pp.235-242, ⟨10.1145/1837934.1837980⟩. ⟨inria-00482722v2⟩
195 Consultations
394 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More