|
||
---|---|---|
inria-00073158v1
Reports
Checking the Convexity of Polytopes and the Planarity of Subdivisions RR-3527, INRIA. 1998 |
||
hal-01591699v1
Conference papers
On the Edge-length Ratio of Outerplanar Graphs International Symposium on Graph Drawing and Network Visualization, 2017, Boston, United States |
||
hal-01366148v1
Conference papers
Monotone Simultaneous Paths Embeddings in $\mathbb{R}^d$ 24th International Symposium on Graph Drawing & Network Visualization, Sep 2016, Athens, Greece |
||
hal-01095415v1
Conference papers
Point-Set Embeddability of 2-Colored Trees Graph Drawing, 2012, Redmond, United States. pp.12, ⟨10.1007/978-3-642-36763-2_26⟩ ![]() |
||
inria-00189036v1
Conference papers
Universal Sets of n Points for 1-bend Drawings of Planar Graphs with n Vertices The 15th International Symposium on Graph Drawing - GD 2007, Sep 2007, Sydney, Australia. pp.345-351, ⟨10.1007/978-3-540-77537-9_34⟩ |
||
hal-01179691v1
Conference papers
Checking the convexity of polytopes and the planarity of subdivisions Workshop Algorithms and Data Structures, 1997, Halifax, Canada. pp.186-199 |
||
lirmm-00324589v1
Conference papers
A Note on α-Drawable k-Trees CCCG'08: Canadian Conference on Computational Geometry, Canada. pp.23-27 |
||
hal-01886947v1
Journal articles
On the Edge-length Ratio of Outerplanar Graphs Theoretical Computer Science, Elsevier, 2018, ⟨10.1016/j.tcs.2018.10.002⟩ |
||
hal-01529154v2
Journal articles
Monotone Simultaneous Paths Embeddings in $\mathbb{R}^d$ Discrete Mathematics and Theoretical Computer Science, DMTCS, 2018, 20 (1), pp.1-11. ⟨10.23638/DMTCS-20-1-1⟩ |
||
hal-01819362v1
Journal articles
On the Planar Split Thickness of Graphs Algorithmica, Springer Verlag, 2018, 80 (3), pp.977 - 994. ⟨10.1007/s00453-017-0328-y⟩ |
||
hal-01326779v1
Conference papers
On the Planar Split Thickness of Graphs LATIN 2016: Theoretical Informatics: 12th Latin American Symposium, Apr 2016, Ensenada, Mexico. pp.403-415, ⟨10.1007/978-3-662-49529-2_30⟩ ![]() |
||
inria-00431769v1
Journal articles
Universal Sets of n Points for One-bend Drawings of Planar Graphs with n Vertices Discrete and Computational Geometry, Springer Verlag, 2010, 43 (2), pp.272-288. ⟨10.1007/s00454-009-9149-3⟩ |
||
inria-00413179v1
Journal articles
Checking the convexity of polytopes and the planarity of subdivisions. Computational Geometry, Elsevier, 1998, 11, pp.187-208. ⟨10.1016/S0925-7721(98)00039-X⟩ |
||
hal-00684510v1
Journal articles
On Point-sets that Support Planar Graphs Computational Geometry, Elsevier, 2013, 43 (1), pp.29--50. ⟨10.1016/j.comgeo.2012.03.003⟩ |
||
hal-00643824v1
Conference papers
On Point-sets that Support Planar Graphs 19th International Symposium on Graph Drawing, Sep 2011, Eindhoven, Netherlands |
||
|