|
||
---|---|---|
tel-01099165v2
Theses
Probabilistic methods for the analysis of algorithms on random tessellations Other [cs.OH]. Université Nice Sophia Antipolis, 2014. English. ⟨NNT : 2014NICE4143⟩ |
||
hal-00769529v2
Reports
A cone can help you find your way in a Poisson Delaunay triangulation [Research Report] RR-8194, INRIA. 2012 |
||
hal-01018174v1
Conference papers
Efficiently Navigating a Random Delaunay Triangulation AofA 2014 - 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, Jun 2014, Paris, France |
||
hal-00940743v3
Journal articles
Efficiently navigating a random Delaunay triangulation Random Structures and Algorithms, Wiley, 2016, 49 (1), pp.95--136. ⟨10.1002/rsa.20630⟩ |
||
hal-01568858v1
Journal articles
Extremes for the inradius in the Poisson line tessellation. Advances in Applied Probability, Applied Probability Trust, 2016, 81, pp.187 - 573. ⟨10.1007/s10687-014-0184-y⟩ |
||
hal-01348831v1
Journal articles
The worst visibility walk in a random Delaunay triangulation is $O(\sqrt{n})$ Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (1), pp.332-359. ⟨10.20382/jocg.v7i1a16⟩ |
||
hal-01018187v1
Poster communications
The Maximum Degree of a Random Delaunay Triangulation in a Smooth Convex AofA 2014 - 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (2014), Jun 2014, Paris, France |
||
hal-01216212v1
Reports
The worst visibility walk in a random Delaunay triangulation is $O(\sqrt{n})$ [Research Report] RR-8792, INRIA. 2015, pp.25 |
||
|