Skip to Main content Skip to Navigation


...
inria-00099478v1  Conference papers
Helmut AltMarc GlisseXavier Goaoc. On the worst-case complexity of the silhouette of a polytope
15th Canadian Conference on Computational Geometry - CCCG 2003, 2003, Halifax, Canada, 4 p
...
inria-00442816v3  Journal articles
Otfried CheongHazel EverettMarc GlisseJoachim GudmundssonSamuel Hornus et al.  Farthest-Polygon Voronoi Diagrams
Computational Geometry, Elsevier, 2011, Computational Geometry, Theory and Applications, 44 (4), pp.14. ⟨10.1016/j.comgeo.2010.11.004⟩
inria-00095282v1  Conference papers
Marc Glisse. An Upper Bound on the Average Size of Silhouettes
22nd ACM Symposium on Computational Geometry 2006, Jun 2006, Sedona, Arizona, United States. pp.105-111, ⟨10.1145/1137856.1137874⟩
...
inria-00336571v1  Journal articles
Marc GlisseSylvain Lazard. An Upper Bound on the Average Size of Silhouettes
Discrete and Computational Geometry, Springer Verlag, 2008, 40 (2), pp.241-257. ⟨10.1007/s00454-008-9089-3⟩
...
inria-00189038v1  Conference papers
Otfried CheongHazel EverettMarc GlisseJoachim GudmundssonSamuel Hornus et al.  Farthest-Polygon Voronoi Diagrams
15th Annual European Symposium on Algorithms - ALGO 2007, Oct 2007, Eilat, Israel. pp.407-418, ⟨10.1007/978-3-540-75520-3_37⟩
...
hal-01919562v3  Journal articles
Hirokazu AnaiFrédéric ChazalMarc GlisseYuichi IkeHiroya Inakoshi et al.  DTM-based Filtrations
Abel Symposia, Springer, 2020, Topological Data Analysis, 15, pp.33-66. ⟨10.1007/978-3-030-43408-3_2⟩
...
hal-01384396v2  Journal articles
Dominique AttaliOlivier DevillersMarc GlisseSylvain Lazard. Recognizing Shrinkable Complexes Is NP-Complete
Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (1), pp.430--443. ⟨10.20382/jocg.v7i1a18⟩
...
inria-00336256v1  Conference papers
Olivier DevillersMarc GlisseSylvain Lazard. Predicates for line transversals to lines and line segments in three-dimensional space
SoCG 2008 - 24th Annual Symposium on Computational Geometry, Jun 2008, College Park, Maryland, United States. pp.174-181, ⟨10.1145/1377676.1377704⟩
...
inria-00404171v1  Journal articles
Julien DemouthOlivier DevillersMarc GlisseXavier Goaoc. Helly-type theorems for approximate covering
Discrete and Computational Geometry, Springer Verlag, 2009, 42 (3), pp.379--398. ⟨10.1007/s00454-009-9167-1⟩
hal-01073072v1  Conference papers
Frédéric ChazalMarc GlisseCatherine LabruèreBertrand Michel. Convergence rates for persistence diagram estimation in Topological Data Analysis.
31st International Conference on Machine Learning, Jun 2014, Beijing, China. pp.163-171
...
hal-03031995v1  Reports
Otfried CheongOlivier DevillersMarc GlisseJi-Won Park. Covering families of triangles
[Research Report] RR-9378, INRIA. 2020, pp.31
...
hal-01289699v1  Journal articles
Marc GlisseSylvain LazardJulien MichelMarc Pouget. Silhouette of a random polytope
Journal of Computational Geometry, Carleton University, Computational Geometry Laboratory, 2016, 7 (1), pp.14. ⟨10.20382/jocg.v7i1a5⟩
...
hal-00841374v2  Reports
Marc GlisseSylvain LazardJulien MichelMarc Pouget. Silhouette of a random polytope
[Research Report] RR-8327, INRIA. 2013, pp.13
...
hal-00805690v1  Journal articles
Olivier DevillersMarc GlisseXavier GoaocGuillaume MorozMatthias Reitzner. The monotonicity of $f$-vectors of random polytopes
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2013, 18 (23), pp.1-8. ⟨10.1214/ECP.v18-2469⟩
...
inria-00103995v1  Conference papers
Hervé BrönnimannOlivier DevillersVida DujmovicHazel EverettMarc Glisse et al.  The Number of Lines Tangent to Arbitrary Convex Polyhedra in 3D
Proceedings of the 20th Annual Symposium on Computational Geometry, Jun 2004, Brooklyn, NY, United States. pp.46 - 55, ⟨10.1145/997817.997827⟩
...
hal-02093445v1  Conference papers
Hirokazu AnaiFrédéric ChazalMarc GlisseYuichi IkeHiroya Inakoshi et al.  DTM-based Filtrations
SoCG 2019 - 35th International Symposium on Computational Geometry, Jun 2019, Portland, United States. ⟨10.4230/LIPIcs.SoCG.2019.58⟩