|
||
---|---|---|
lirmm-01624805v1
Directions of work or proceedings
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIII Transactions on Large-Scale Data- and Knowledge-Centered Systems, LNCS (10430), Springer, Berlin, Heidelberg; Springer Berlin / Heidelberg, 185 p., 2017, Print: 978-3-662-55695-5; Online: 978-3-662-55696-2. ⟨10.1007/978-3-662-55696-2⟩ |
||
lirmm-00838618v1
Conference papers
Fast and Exact Mining of Probabilistic Data Streams ECML-PKDD: Machine Learning and Knowledge Discovery in Databases, Sep 2013, Prague, Czech Republic. pp.493-508, ⟨10.1007/978-3-642-40988-2_32⟩ ![]() |
||
lirmm-01076107v1
Conference papers
NACluster: A Non-Supervised Clustering Algorithm for Matching Multi Catalogues International Conference on e-Science, Oct 2014, Guarujá, SP, Brazil. pp.83-86, ⟨10.1109/eScience.2014.61⟩ |
||
hal-00695035v1
Conference papers
Data management in the APPA P2P system HPDGrid 2006 - International Workshop on High-Performance Data Management in Grid Environments - Co-located with VECPAR 2006, 7th International Meeting on High Performance Computing for Computational Science, Jul 2006, Rio de Janeiro, Brazil |
||
lirmm-02973633v2
Journal articles
BestNeighbor: Efficient Evaluation of kNN Queries on Large Time Series Databases Knowledge and Information Systems (KAIS), Springer, In press, ⟨10.1007/s10115-020-01518-4⟩ |
||
lirmm-00748635v1
Books
P2P Techniques for Decentralized Applications Morgan & Claypool Publishers, pp.104, 2012, 1608458229 |
||
lirmm-02197618v1
Journal articles
Massively Distributed Time Series Indexing and Querying IEEE Transactions on Knowledge and Data Engineering, Institute of Electrical and Electronics Engineers, 2020, 32 (1), pp.108-120. ⟨10.1109/TKDE.2018.2880215⟩ |
||
inria-00482333v1
Books
Data Access in Dynamic Distributed Systems VDM-Verlag. VDM-Verlag, pp.188, 2009, 978-3-639-19796-9 |
||
lirmm-01091870v1
Conference papers
Compression de flux de données probabilistes attentive à l'agrégation BDA: Gestion de Données — Principes, Technologies et Applications, Oct 2014, Autrans, France |
||
tel-02169414v1
Habilitation à diriger des recherches
Parallel Techniques for Big Data Analytics Numerical Analysis [cs.NA]. Université de Montpellier, 2019 |
||
lirmm-01169603v1
Conference papers
Data Partitioning for Fast Mining of Frequent Itemsets in Massively Distributed Environments DEXA: Database and Expert Systems Applications, Sep 2015, Valencia, Spain. pp.303-318, ⟨10.1007/978-3-319-22849-5_21⟩ |
||
lirmm-01171555v1
Conference papers
Optimizing the Data-Process Relationship for Fast Mining of Frequent Itemsets in MapReduce MLDM: Machine Learning and Data Mining, Jul 2015, Hamburg, Germany. pp.217-231, ⟨10.1007/978-3-319-21024-7_15⟩ |
||
lirmm-01162366v1
Conference papers
Aggregation-Aware Compression of Probabilistic Streaming Time Series MLDM: Machine Learning and Data Mining, Jul 2015, Hamburg, Germany. pp.232-247, ⟨10.1007/978-3-319-21024-7_16⟩ |
||
lirmm-00748605v1
Conference papers
FMU: Fast Mining of Probabilistic Frequent Itemsets in Uncertain Data Streams BDA: Bases de Données Avancées, 2012, Clermont-Ferrand, France |
||
hal-02788459v1
Preprints, Working Papers, ...
Efficient Matrix Profile Computation Using Different Distance Functions 2020 |
||
lirmm-01886725v1
Conference papers
A Differentially Private Index for Range Query Processing in Clouds 34th IEEE International Conference on Data Engineering (ICDE), Apr 2018, Paris, France. pp.857-868, ⟨10.1109/ICDE.2018.00082⟩ |
||
lirmm-01411190v1
Conference papers
Mining Maximally Informative k-Itemsets in Massively Distributed Environments BDA: Gestion de Données — Principes, Technologies et Applications, Nov 2016, Poitiers, France |
||
lirmm-01620060v1
Conference papers
TARDIS: Optimal Execution of Scientific Workflows in Apache Spark DaWaK: Data Warehousing and Knowledge Discovery, Aug 2017, Lyon, France. pp.74-87, ⟨10.1007/978-3-319-64283-3_6⟩ |
||
lirmm-01620125v1
Conference papers
DPiSAX: Massively Distributed Partitioned iSAX ICDM: International Conference on Data Mining, Nov 2017, New Orleans, United States. pp.1135-1140, ⟨10.1109/ICDM.2017.151⟩ |
||
lirmm-01620154v1
Conference papers
RadiusSketch: Massively Distributed Indexing of Time Series DSAA: Data Science and Advanced Analytics, Oct 2017, Tokyo, Japan. pp.1-10 |
||
lirmm-01620207v1
Conference papers
Querying Key-Value Stores Under Simple Semantic Constraints : Rewriting and Parallelization BDA: Gestion de Données — Principes, Technologies et Applications, Nov 2017, Nancy, France |
||
lirmm-00607898v1
Journal articles
Building a Peer-to-Peer Content Distribution Network with High Performance, Scalability and Robustness Information Systems, Elsevier, 2011, 36 (2), pp.222-247 |
||
lirmm-01288571v1
Journal articles
A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining Knowledge and Information Systems (KAIS), Springer, 2017, 50 (1), pp.1-26. ⟨10.1007/s10115-016-0931-2⟩ |
||
lirmm-01867804v1
Conference papers
Scientific Data Analysis Using Data-Intensive Scalable Computing: the SciDISC Project LADaS: Latin America Data Science Workshop, Aug 2018, Rio de Janeiro, Brazil |
||
lirmm-01187275v1
Conference papers
Fast Parallel Mining of Maximally Informative k-Itemsets in Big Data ICDM: International Conference on Data Mining, Aug 2015, Atlantic city, United States. pp.359-368, ⟨10.1109/ICDM.2015.86⟩ |
||
lirmm-01886760v1
Conference papers
Spark-parSketch: A Massively Distributed Indexing of Time Series Datasets CIKM: Conference on Information and Knowledge Management, Oct 2018, Turin, Italy. pp.1951-1954, ⟨10.1145/3269206.3269226⟩ |
||
|
||
lirmm-01632355v1
Poster communications
Highly Scalable Real-Time Analytics with CloudDBAppliance XLDB: Extremely Large Databases Conference, Oct 2017, Clermont-Ferrand, France. 10th Extremely Large Databases Conference, 2017 |
||
lirmm-02265729v1
Conference papers
Parallel Streaming Implementation of Online Time Series Correlation Discovery on Sliding Windows with Regression Capabilities CLOSER 2019 - 9th International Conference on Cloud Computing and Services Science, May 2019, Heraklion, Greece. pp.681-687 |
||
lirmm-02265726v1
Conference papers
Distributed Algorithms to Find Similar Time Series ECML-PKDD 2019 - European Conference on Machine Learning and Knowledge Discovery in Databases, Sep 2019, Wurtzbourg, Germany |
||
|