|
||
---|---|---|
tel-00536984v2
Theses
From 3D point clouds to feature preserving meshes Modeling and Simulation. Université Nice Sophia Antipolis, 2010. English |
||
tel-00552215v1
Theses
Triangulating Point Sets in Orbit Spaces Computer Science [cs]. Université Nice Sophia Antipolis, 2010. English |
||
inria-00074303v1
Reports
Triangulation sous contraintes en dimension quelconque [Rapport de recherche] RR-2373, INRIA. 1994 |
||
hal-00454565v1
Preprints, Working Papers, ...
Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces 2010 |
||
hal-00536710v1
Conference papers
Connections between Theta-Graphs, Delaunay Triangulations, and Orthogonal Surfaces WG 2010, Jun 2010, Greece. pp.266--278, ⟨10.1007/978-3-642-16926-7_25⟩ |
||
tel-01419457v2
Theses
Anisotropic mesh generation Other [cs.OH]. Université Côte d'Azur, 2016. English. ⟨NNT : 2016AZUR4150⟩ |
||
inria-00504027v1
Conference papers
Formal study of plane Delaunay triangulation Interactive Theorem Proving, Jul 2010, Edinburgh, United Kingdom. pp.211-226 |
||
hal-00940743v3
Journal articles
Efficiently navigating a random Delaunay triangulation Random Structures and Algorithms, Wiley, 2016, 49 (1), pp.95--136. ⟨10.1002/rsa.20630⟩ |
||
hal-01294409v1
Journal articles
Delaunay triangulations of closed Euclidean d-orbifolds Discrete and Computational Geometry, Springer Verlag, 2016, 55 (4), pp.827--853. ⟨10.1007/s00454-016-9782-6⟩ |
||
inria-00503837v1
Journal articles
Surface Reconstruction from Multi-View Stereo of Large-Scale Outdoor Scenes. International Journal of Virtual Reality, IPI Press, 2010, The International Journal of Virtual Reality, Volume 9 (Number 1), pp.19-26 |
||
inria-00506017v1
Reports
Delaunay Triangulations of Point Sets in Closed Euclidean d-Manifolds [Research Report] RR-7352, INRIA. 2010 |
||
inria-00493046v1
Reports
Walking Faster in a Triangulation [Research Report] RR-7322, Inria. 2010, pp.15 |
||
hal-00487862v1
Conference papers
Manifold reconstruction using Tangential Delaunay Complexes ACM Symposium on Computational Geometry, Jun 2010, Snowbird, United States. pp.200 |
||
|