Skip to Main content Skip to Navigation

hal-00824075v1  Conference papers
Guillem RigaillToby Dylan HockingFrancis BachJean-Philippe Vert. Learning Sparse Penalties for Change-Point Detection using Max Margin Interval Regression
ICML 2013 - 30 th International Conference on Machine Learning, Supported by the International Machine Learning Society (IMLS), Jun 2013, Atlanta, United States
inria-00438823v1  Journal articles
J. LouradourKhalid DaoudiFrancis Bach. Feature Space Mahalanobis Sequence Kernels: Application to SVM Speaker Verification
IEEE Transactions on Audio, Speech and Language Processing, Institute of Electrical and Electronics Engineers, 2007, 15 (8), pp.2465--2475
hal-01388498v2  Journal articles
Dmitry BabichevFrancis Bach. Slice inverse regression with score functions
Electronic Journal of Statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2018, Volume 12, Number 1 (2018), pp.1507-1543. ⟨10.1214/18-EJS1428⟩
hal-00200109v1  Preprints, Working Papers, ...
Francis Bach. Graph kernels between point clouds
hal-00610534v3  Journal articles
Matthieu SolnonSylvain ArlotFrancis Bach. Multi-task Regression using Minimal Penalties
Journal of Machine Learning Research, Microtome Publishing, 2012, 13, pp.2773-2812
hal-00218338v2  Journal articles
Alain RakotomamonjyFrancis BachStéphane CanuYves Grandvalet. SimpleMKL
Journal of Machine Learning Research, Microtome Publishing, 2008, 9, pp.2491-2521
hal-00620197v1  Conference papers
Edouard GraveGuillaume ObozinskiFrancis Bach. Trace Lasso: a trace norm regularization for correlated designs
Neural Information Processing Systems (NIPS), 2012, Spain
hal-00757696v4  Journal articles
Francis Bach. Duality between subgradient and conditional gradient methods
SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 2015, 25 (1), pp.115-129. ⟨10.1137/130941961⟩
hal-01062130v1  Conference papers
Damien GarreauRémi LajugieSylvain ArlotFrancis Bach. Metric Learning for Temporal Sequence Alignment
Advances in Neural Information Processing Systems 27 (NIPS 2014), Dec 2014, Montréal, Canada
hal-00904820v1  Conference papers
Anil NelakantiCédric ArchambeauJulien MairalFrancis BachGuillaume Bouchard. Structured Penalties for Log-linear Language Models
EMNLP - Empirical Methods in Natural Language Processing, Oct 2013, Seattle, United States. pp.233-243
hal-01899949v1  Conference papers
Alexandre DéfossezNeil ZeghidourNicolas UsunierLéon BottouFrancis Bach. SING: Symbol-to-Instrument Neural Generator
Conference on Neural Information Processing Systems (NIPS), Dec 2018, Montréal, Canada
inria-00618152v3  Conference papers
Mark SchmidtNicolas Le RouxFrancis Bach. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization
NIPS'11 - 25 th Annual Conference on Neural Information Processing Systems, Dec 2011, Grenada, Spain
hal-01118276v2  Journal articles
Francis Bach. On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions
Journal of Machine Learning Research, Microtome Publishing, 2017, 18 (21), pp.1-38
hal-00804431v3  Journal articles
Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression
Journal of Machine Learning Research, Microtome Publishing, 2014, 15, pp.595-627
hal-01321664v2  Conference papers
Aude GenevayMarco CuturiGabriel PeyréFrancis Bach. Stochastic Optimization for Large-scale Optimal Transport
NIPS 2016 - Thirtieth Annual Conference on Neural Information Processing System, Dec 2016, Barcelona, Spain
hal-01652151v1  Conference papers
Marwa El HalabiFrancis BachVolkan Cevher. Combinatorial Penalties: Which structures are preserved by convex relaxations?
AISTATS 2018 - 22nd International Conference on Artificial Intelligence and Statistics, Apr 2018, Canary Islands, Spain
hal-01472867v1  Conference papers
Nicolas FlammarionFrancis Bach. Stochastic Composite Least-Squares Regression with Convergence Rate O(1/n)
Proceedings of The 30th Conference on Learning Theory, (COLT), 2017, Amsterdam, Netherlands
hal-01016843v3  Conference papers
Aaron DefazioFrancis BachSimon Lacoste-Julien. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Advances In Neural Information Processing Systems, Nov 2014, Montreal, Canada
hal-02974237v1  Conference papers
Hadrien HendrikxFrancis BachLaurent Massoulié. Dual-Free Stochastic Decentralized Optimization with Variance Reduction
NeurIPS 2020 - 34th Conference on Neural Information Processing Systems, Dec 2020, Vancouver / Virtual, Canada
hal-01319293v2  Conference papers
Palaniappan BalamuruganFrancis Bach. Stochastic Variance Reduction Methods for Saddle-Point Problems
Neural Information Processing Systems (NIPS), Dec 2016, Barcelona, Spain
hal-02440504v1  Journal articles
Kevin ScamanFrancis BachSébastien BubeckYin LeeLaurent Massoulié. Optimal Convergence Rates for Convex Distributed Optimization in Networks
Journal of Machine Learning Research, Microtome Publishing, 2019, 20, pp.1 - 31