Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology

Résumé : Dans cette thèse, nous avons abordé deux problèmes de modélisation mathématique pour la propagation des signaux électriques cardiaques : la propagation à l’échelle tissulaire en présence d’hétérogénéités et la propagation à l’échelle cellulaire avec des jonctions communicantes non linéaires. Le modèle standard utilisé en électrocardiologie est le modèle bidomaine. Il est déduit par homogénéisation des propriétés microscopiques du tissu. Pour cela, on suppose que les myocytes électriquement actifs sont uniformément répartis dans le cœur. Bien que ce soit une hypothèse raisonnable pour des cœurs sains, ce n’est plus vrai dans certains cas pathologiques où des changements importants dans la structure tissulaire se produisent. C’est le cas, par exemple des maladies cardiaques ischémiques, rhumatismales et inflammatoires, de l’hypertrophie ou de l’infarctus. Ces hétérogénéités tissulaires sont souvent prises en compte à l’aide d’un ajustement ad hoc des paramètres du modèle. Le premier objectif de cette thèse consistait à généraliser les équations du modèle bidomaine au cas des pathologies cardiaques structurelles. Nous avons supposé une alternance périodique d’éléments de tissus sains (modèle bidomaine) et modifiées (inclusions diffusives). La simulation numérique directe d’un tel modèle nécessite une discrétisation très fine, et entraîne un coût de calcul élevé. Pour éviter cela, nous avons construit un modèle homogénéisé à l’échelle macroscopique en utilisant une analyse à deux échelles. Nous avons retrouvé un modèle de type bidomaine avec des coefficients de conductivité modifiés, dits effectifs. En complément, nous avons effectué une vérification numérique de la convergence du modèle microscopique vers celui homogénéisé, dans une situation bidimensionnelle. Dans la deuxième partie, nous avons quantifié les effets de différentes formes d’inclusions diffusives sur les coefficients de conductivité effectifs et leur anisotropie en 2D et 3D. De plus, nous avons effectué des simulations sur des domaines représentant des morceaux de tissu 2D avec ces coefficients de conductivité modifiés. Nous avons observé des changements de la vitesse de propagation et de la forme du front de l’onde de dépolarisation. Dans la troisième partie, nous avons simulé le modèle homogénéisé en 3D, à partir d’images par résonnance magnétique (IRM) à haute résolution d’un cœur de rat. Nous avons évalué les propriétés structurelles du tissu en utilisant des outils d’analyse d’image. Nous avons ensuite utilisés ces évaluations pour consturire les paramètres dans le modèle homogénéisé. Dans la dernière partie de cette thèse, nous avons étudié les effets du comportement non linéaires des jonctions communicantes sur la propagation du signal à l’échelle cellulaire. Dans les modèles existants, les jonctions communicantes sont supposées avoir un comportement linéaire, lorsqu’elles sont modélisées. Cependant les données provenant des expériences montrent que ceux-ci ont un comportement non linéaire dépendant du temps et de la différence de potentiel entre cellules voisines. D’abord, nous avons présenté un modèle non linéaire 0D du courant dans les jonctions communicantes. Ensuite, nous avons recalé le modèle sur les données expéri mentales. Enfin, nous avons proposé un modèle mathématique 2D qui décrit l’interaction électrique des myocytes cardiaques à l’échelle cellulaire. Ce modèle utilise le courant dans les jonctions communicantes comme une liaison directe entre des cellules adjacentes.
Type de document :
Thèse
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/tel-01478145
Contributeur : Andjela Davidovic <>
Soumis le : lundi 27 février 2017 - 22:33:58
Dernière modification le : jeudi 11 janvier 2018 - 06:23:41
Archivage à long terme le : dimanche 28 mai 2017 - 14:20:14

Identifiants

  • HAL Id : tel-01478145, version 1

Collections

Citation

Anđela Davidović. Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology . Mathematics [math]. Université de Bordeaux, 2016. English. ⟨tel-01478145v1⟩

Partager

Métriques

Consultations de la notice

335

Téléchargements de fichiers

35