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Abstract

On-line end-to-end Service Level Agreement (SLA) monitoring is of key importance

nowadays. For this purpose, recent researches have focused on measuring (when pos-

sible), or estimating (most of the times) network Quality of Service (QoS) and per-

formance parameters. Up to now, all the proposed solutions have the drawback of re-

quiring a huge amount of resources with low accuracy, generally leading to unscalable

systems.

We observe, however, that the accurate estimation of network QoS parameters is

not necessarily required for SLA assessment. What is required is an efficient and scal-

able method to directly detect SLA violations. To this end, this paper makes the fol-

lowing contributions. First, we introduce a polynomial-complexity algorithm based

on Hausdorff Distance that efficiently detects SLA violations. Second, we propose a

Simplified Hausdorff Distance, which provides better accuracy at lower computational

cost. Our solution works on simple to measure time series—the Inter-Packet Arrival

Times (IPATs) received in our case.

The validity of our proposal is confirmed by comparing with perfect knowledge of

the QoS status as well as other existing alternatives in a real testbed.
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1. Introduction

On-line end-to-end Service Level Agreement (SLA) monitoring is of key impor-

tance nowadays, since both Internet Service Providers (ISP) and customers want to

know the quality of network services in real-time, and whether this quality complies

with the contracted SLA. For this purpose, classical approaches for SLA assessment

[1, 2, 3, 4, 5] have focused on accurately measuring (when possible) or estimating

(most of the times) network QoS parameters such as One Way Delay (OWD) [6], In-

ter Packet Delay Variation (IPDV) [7], Available BandWidth (ABW) [8], Packet Loss

Ratio (PLR) [9], etc. Up to now, attempts to provide accurate techniques for estimating

such parameters have failed (e.g., the estimation accuracy of the ABW might present

error rates greater than 50% in real environments [10]). This is mainly due to network

traffic variability and different traffic anomalies, which make SLA assessment a chal-

lenging problem. In addition, SLA assessment methods based on the online estimation

of end-to-end QoS parameters present other drawbacks. For instance, multiple entities

need to be deployed and managed in the network in order to estimate the QoS metrics

(e.g., multiple points of capture and points of traffic analysis are required, usually in-

cluding stations located in the core of the network). Furthermore, estimating the QoS

metrics implies to gather distributed information not only about the traffic itself, but

also about the synchronization status of the involved entities [11], so the control traffic

generated is an important bottleneck of any solution using this approach [4].

Overall, SLA assessment systems based on the estimation of QoS metrics suffer

from both lack of accuracy and large scalability problems. In light of this, our work

does not focus on the estimation of QoS metrics. The originality of the contribution

presented in this paper is that we focus directly on the efficient detection and reporting

of SLA violations. More specifically, we focus on the traffic profile rather than on

the estimation of QoS metrics, and as we shall show, this enables the design of more

scalable SLA monitoring systems.

The rationale behind this is that classically ISP deal with SLA issues by overpro-

visioning the network [12]. This means that at the end, the complex instrumentation
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needed for the online assessment of QoS metrics ends up estimating values that are,

most of the time, within acceptable bounds. We argue that this is inefficient for SLA

assessment, since in practice SLAs are typically violated during service disruptions or

severe congestion, i.e., when the QoS provided by the network collapses. Based on this

observation, this paper proposes the following approach:

1. Work as much as possible with a single point of analysis (the egress node), so as

to minimize the queries and communication with the ingress node.

2. Detect and communicate SLA violations very efficiently in order to have a scal-

able system.

3. Exploit the existing correlation between the measured parameters and the quality

in the network.

To achieve these goals, we propose to use the Inter Packet Arrival Time (IPAT).

The IPATs can be easily computed at destination by getting the reception timestamps

of the packets—indeed, the computation of the IPAT only involves a subtraction of two

integers (the timestamps).

Previous works [13, 14], have shown that the IPATs are tightly correlated with net-

work congestion. In this paper, we bring this correlation one step further, by mapping

the IPAT distribution with the current network conditions. In particular, our proposal

performs statistical analysis of the IPATs, with the goal of detecting changes in the

status of the network. This is done by comparing different IPAT distributions using a

well-known algorithm, namely the Hausdorff Distance.

Given that this algorithm has a fairly high computational cost
(

O(n2)
)

, we propose

an improvement that we name Simplified Hausdorff Distance, which delivers better

accuracy with lower computational cost (O(n)) for our application.

We validate our solution with different real scenarios, first over a controlled testbed

with customizable network conditions, and later over an Europe-wide scenario with 12

different testbeds and 5 access technologies. In both scenarios we performed a broad

range of tests, including synthetically generated UDP traffic, as well as audio and video

flows generated by a real video streaming application.

Our results confirm the adaptability and accurate detection of the different SLA
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violations found in our traces, all accomplished by reducing the resource usage down

to ∼ 11% (i.e. we achieve an 89% reduction in the network resource usage), which is

a promising result.

The rest of the paper is structured as follows. Next section details relevant related

work. In Section 3, we outline the main contribution of this paper, and we also detail the

distance algorithms considered in this work. Section 4 presents the methodology used

for performing the on-line SLA assessment. The validation methodology is described

in Section 5, including details about the different tests achieved and their conditions.

Section 6 shows the evaluation results, while in Section 7 we experimentally study the

impact of the system parameters on the behavior of the monitoring solution proposed.

Finally, section 8 concludes the paper, and presents the open issues left for future work.

2. Related Work

In general, network measurement techniques can be split into two different groups,

active and passive network measurements, each one with its own advantages over the

other.

SLA assessment has been previously studied using active traffic analysis. Some

important work has been performed by Barford et al. in [15], where the authors high-

light the limitations of packet loss estimation using active probes, compared to the

ones found via SNMP in commercial routers. This work was continued by Sommers

et al. in [16], where the authors improved the loss estimation of classical Poisson-

modulated probing mechanisms by presenting Badabing, a dynamic active tool that

improves the accuracy depending on the resources used for the estimation. More re-

cently, in [3], Sommers et al. gathered together all the above knowledge, and presented

SLAm, another active probing tool that implements innovative packet loss, delay, and

delay variation estimation techniques for SLA assessment. All mentioned publications

stress the need of proper metric estimation in order to lead to correct SLA assessment.

Our work differs from these proposals, in the sense that our methodology does

not focus on accurate metric estimation, but rather in the search for relevant packet

information to efficiently infer whether the network quality violates an SLA. Moreover,
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in contrast to the active solutions adopted by the works mentioned above, we use a

passive traffic analysis approach.

Regarding passive traffic analysis, some research has been done in our previous

works [4, 5, 17, 18], in which we proposed a distributed infrastructure, for inferring

the network quality by extracting the performance metrics from detailed packet infor-

mation. The metric computation is centralized, and requires several collection points

on the edges of the network that send packet information (timestamps, etc.) to a central

entity, with the consequent use of bandwidth due to the so called control traffic. Such

received information is used by the central entity to compute the flow’s network met-

rics (OWD, IPDV and PLR). With a different approach, in this paper, we use passive

monitoring as a method for training our SLA assessment algorithm, which needs such

network performance information for associating the IPAT distributions to the corre-

sponding network performance status.

More related to this paper, in our previous work [19], we presented a similar tech-

nique as the one developed here, which was based on the utilization of the Kullback-

Leibler Divergence [20]. That solution detected SLA violations with high accuracy,

but at the cost of using many network resources. In this paper, we improve the resource

usage by means of the Hausdorff Distance [21, 22], and our enhanced Simplified Haus-

dorff Distance. We show the better behavior of the latter, by comparing our results with

the ones obtained previously with the Kullback-Leibler Divergence, in exactly the same

network conditions.

3. Distribution Comparison

As described above, we plan to use the IPATs in order to detect violations to the

SLA. Even with their good characteristics in terms of computational efficiency, just

gathering IPATs is not enough to provide SLA assessment. First, IPATs do not contain

useful metrics about the performance of the network. Second, IPATs might change

unexpectedly due to changes on the network conditions, or due to changes in the traffic

profile (e.g. in VoIP: change of the codec, silence in the conversation, etc.). Third,

currently there is no direct mapping between the IPATs and SLA violations.
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To tackle these challenges, we propose to periodically compare the current IPAT

distribution with a set of reference IPAT distributions. Clearly, getting this set of ref-

erence distributions means to integrate an on-line training process that records all new

IPAT distributions observed on the network. This training process needs to link each

of these new IPAT distributions to the current QoS status, and thereby, associate each

reference distribution to a particular QoS level of the network.

In this section, we focus on the general description of the distance algorithms that

we used for comparing the IPAT distributions. In the next section, we shall detail the

complete infrastructure using this information.

3.1. Hausdorff Distance

The Hausdorff Distance [23] is mostly used in image recognition and object lo-

cation, and it is known for its good versatility in measuring the distance between two

different geometrical objects.

Definition 1. The Hausdorff Distance is the maximum of all the minimum distances

between two sets.

Formally, the Hausdorff Distance gets a finite set of points P = {p1, . . . , pn} repre-

senting a reference, and compares it to a probe Q = {q1, . . . ,qm} using:

h(P,Q) = max
p∈P
{min

q∈Q
{g(p,q)}} (1)

where g(p,q) stands for the geometrical distance between p and q. Its efficiency—

taken as the computational cost—is normally not suitable for on-line operations. Ba-

sically, we must obtain the minimum distance from all the elements of P towards all

the elements of Q. Hence the cost is O(nm) where n and m are the sizes of P and Q,

respectively. In general, n≈ m, so the complexity of the Hausdorff Distance is O(n2).
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3.2. The Simplified Hausdorff Distance

The Hausdorff Distance was devised for operating in the geometric plane, but in

our scenario, we use distributions instead of polygons, which allows us to reduce the

algorithm’s complexity.

The Hausdorff Distance basically compares all the elements of a set with all the

elements of another. However, when working with time distributions, there is a new

abstraction that does not exist on the geometrical plane, namely, the bin size. As op-

posed to the “all-against-all” comparison of the original algorithm, with time distri-

butions, we only need to compare similar bins (in position). This allows to reduce the

computational cost of the algorithm.

Definition 2. Let’s define o as the bin offset threshold, and P, Q two distributions,

where P is the reference and Q the acquired distribution, each with n and m elements,

respectively. We define the “Simplified Hausdorff Distance” as:

hD(P,Q) = max
i=1...n

{
i+o

min
j=i−o
{g(Pi,Q j)}} (2)

With this enhancement, the Simplified Hausdorff Distance yields linear complexity

for small values of o, i.e., O(n) for o≪ n, which is in fact the case in our context.

As a side effect, this reduction in the number of comparisons permits our algorithm

to increase its accuracy. The reason for this is that now the compared bins are more

closely related (the impact of the bin size selection is evaluated in Section 7).

4. SLA Violation Detection

Computing the distance among distributions determines how different are the ref-

erence and the acquired traffic profiles at the egress node. However, this information is

not sufficient to perform the SLA assessment. In this section, we present the methodol-

ogy used for detecting SLA violations, and how the latter is supported by the distance

information described above. We start by presenting a general view of the methodol-

ogy, and then we provide a detailed description of each of its components.
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4.1. General Methodology

A simplified view of the methodology for detecting and reporting SLA violations is

shown in Fig. 1. The methodology is composed of three interrelated algorithms (which

are detailed throughout this section), and it is divided into two blocks, namely, Block I

and Block II.

In general terms, Block I computes the IPATs of a flow during a time period at the

egress node, and compares their distribution with a Reference Distribution Set (RDS).

If the distributions are similar, we assume that the network status is comparable, and

therefore, no SLA violations are reported. Otherwise, Block II is activated, where we

query the ingress node to acquire detailed packet information. More precisely, we use

passive measurements to compute the real performance metrics on the network. Based

on this, we assess the current status of the network and report any encountered SLA

Distribution acquisition at  the egress node

Compare

distances between

IPAT distributions:

minD ?

Yes

Algorithm 3

Compare

Distributions

Block I: Hausdorff-based Assessment Loop

Block II: Training Process

and SLA violation reporting

No

queryValidity

(query the ingress

monitoring point)

Trigger SLA

violation

Algorithm 1: SLA Assessment

Algorithm 2

Training

Assess

eq. (3):

status < v ?

Yes

No
Update the

RDS:

D  D U Q

Figure 1: General methodology for SLA assessment.
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violations.

The strengths of this methodology are fundamentally the following:

• Once the monitoring system is appropriately trained, the assessment process will

generally remain looped in Block I. This means that the SLA assessment is per-

formed integrally at the egress node, and therefore, neither the assessment of

QoS metrics nor the exchange of control traffic is required.

• The transition from Block I to Block II is only invoked when the comparison

of the current IPAT distribution with the RDS reveals significant differences,

meaning that the network conditions are unknown. When this occurs, the SLA is

accurately assessed by explicitly measuring the QoS metrics between the source

and destination. These measurements are in turn used to dynamically retrain

the system, and thereby, to update the RDS in case a valid IPAT distribution is

found—the validity of a distribution is formally defined later in Definition 3, but

informally, it refers to a distribution of IPATs mapping a QoS state that respects

the SLA.

A more specific description of the general logic to detect SLA violations is shown

in Algorithm 1. The detection works on a per flow basis f , and during a configured

time interval t. The empirical distribution is computed in bins of width w (referring to

IPAT ranges), and therefore, a particular IPAT i falls in bin k = ⌊ i
w
⌋ (the study of the

proper t and w values is deferred to Section 7).

After the distribution acquisition in the time interval t, Algorithm 1 considers the

following actions in order to cope with the potential variability of the IPATs:

• Training and updating the IPAT distribution set.

– Map this set to the current network status.

– Update the set of valid IPAT distributions if needed.

• Comparing the current profile with the learned status.
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– Decide whether the traffic conditions have changed or not.

The rest of this section performs a step by step description of the algorithms. We

start by detailing how the system learns the real quality provided by the network, and

then we focus on how the system compares distributions.

4.2. Training and Update Strategy

Any system with adaptability requirements must have a robust training mechanism.

We start by introducing the concept of a valid IPAT distribution.

Definition 3. A Valid IPAT Distribution (VID) is a distribution for which a function V

of the real metrics (OWD, IPDV, and PLR) falls above a specified SLA threshold ν.

In our model, the training process queries the source monitoring point of the flow,

and by means of passive measurements gets the real QoS parameters at the specified

time interval t. As shown in line 3 of Algorithm 2, this is done by the queryValidity()

procedure. Once the real metrics have been acquired, the destination must validate if

the SLA is respected or not. In our work, and as a proof of concept, we assume the

simple and linear SLA compliance policy shown in (3).

4.3. Validity Function V

The QoS constraints might considerably differ depending on the type of traffic.

For example, videostreaming is robust to large OWDs and high IPDVs, but not to

packet losses, while videoconferencing is sensitive to all the metrics. Hence, we define

ωO,ωI ,ωP as weights specified for each particular metric, where ωO +ωI +ωP = 1.

Expression (3) represents the degree of validity of the QoS for a time interval t.

V = Q O(OWD) ·ωO +Q I(|IPDV |) ·ωI +Q P(PLR) ·ωP (3)

In (3), Q ∗(x) determines the quality degrading function, which we define as:
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Algorithm 1 SLA assessment

Input: f , D { f : Current Flow, D : Global RDS}

Output: status

S← getFlowSourceMP( f ) {Source Monitoring Point}

Q← acquireDistribution( f , t)

5: if D = ∅ then

status← Training(Q,S) {see Alg. 2}

else

status← compareDistributions(Q,S) {see Alg. 3}

end if

10: if status < ν then {Unacceptable QoS conditions}

trigger SLAViolation(status)

end if

Q ∗(x) =



















1, x≤ X

λe−λ(x−X ), X < x < M

0, otherwise

(4)

where X is the metric dependent threshold of quality degradation specified by the SLA,

and M the upper feasible bound for the quality of that particular metric. Finally, λ in

(0,1) is the decaying factor for the exponential quality degradation function.

In (3), V is defined in the range [0,1] indicating the quality of service experienced

by the flow with respect to the SLA. In the range above, 1 stands for perfect quality,

while 0 is absolute lack of it. To compute this value we consider a linear combination

of the usual metrics (OWD, IPDV, and PLR), but clearly, any other function V can be

applied seamlessly.

When V ≥ ν the network behavior is considered stable, where ν is the specified

quality threshold of the system. The closer is ν to 1, the stricter our system will be to

SLA violations.

In summary, the performance metrics are used to map the IPAT distribution to the
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real network status, and we use such distribution as a reference to infer the SLA com-

pliance.

Definition 4. A Reference Distribution Set (RDS) D is a set of strictly different VID

distributions, where |D| is the cardinality of the set, and
{

D1, . . . ,D |D|
}

are the ele-

ments of the set. The size of the RDS is bounded by a predefined ∆, which limits its

maximum memory usage.

The Training and Update Strategy is in charge of keeping an updated and valid

version of the RDS—the details are shown in Algorithm 2.

A prerequisite of the RDS is that all the stored distributions must represent good

reference traffic conditions to be compared with. Therefore, our system must have

some means for correctly assessing them. In order to do so, we use the technique

presented in [4], where the source measurement point (i.e., the ingress router) sends

per packet information, such as transmission timestamps; the timestamps are matched

on the destination measurement point (i.e., the egress router), for computing the rel-

evant performance metrics. This technique requires to generate some control traffic

from source to destination to compute the metrics. Such control traffic determines

the amount of bandwidth and resources required by the system, and for the sake of

efficiency and scalability, it should be minimized. Nevertheless, this method reports

reliable values of the network metrics to be mapped to the reference IPAT distribution.

Once the real validity is assessed, if it is below ν, the event is registered, the dis-

tribution discarded, and a SLAViolation event is triggered (see step 11 in Algorithm 1).

Otherwise we insert the distribution into the RDS. Algorithm 2 shows that when D is

full, we discard the oldest unused distribution. We propose this simple replacement

algorithm for two different reasons: i) it is very efficient and easy to implement; ii) it

honors the fact that if a distribution has not been representative of the traffic profile for

a while, it’s due to changes in the network status; so this distribution is not required

anymore.
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Algorithm 2 Training

Input: Q,S {Q : IPAT distribution, S : Flow Source}

Output: status

status← queryValidity(Q,S) {Computes Eq. (3) and generates control traffic by

acquiring the real metrics}

if status < ν then

5: return status {Do not keep Q in RDS, SLA violation}

end if

if |D| ≥ ∆ then

expireLatestNotUsed(D) {Expiration policy}

end if

10: D←D ∪Q

4.4. Distribution comparison

The complete pseudocode for the comparison between distributions is detailed in

Algorithm 3. As mentioned above, the metric we chose for comparing two distributions

is a distance, which can be described as how far is one distribution from another, or

preferably, as the degree of similitude (dissimilitude) between two distributions. The

higher the distance, the more different the distributions (and so does the traffic profile

and the network performance).

Since the RDS is composed by a set of distributions, the distance cannot be directly

computed. Hence, we define:

Definition 5. The degree of Matching DM between a RDS D and another distribution

Q is defined as:

DM(D,Q) = min{d(p,Q)} p = D1 . . .D |D| (5)

where d(p,Q) is the distance between the distributions p and Q, such as the ones

presented in Section 3.
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Algorithm 3 compareDistributions

Input: Q,S {Q :Acquired Distribution, S : Flow’s Source}

Output: status

minD← ∞

for all D←D do

5: d← computeDistance(D,Q)

if d < minD then

minD← d

P← D

end if

10: end for

if minD≥ δ then

status← Training(P,S) {Does metric computation}

else

updateUse(P) {Renew usage of the distribution to prevent expiration when

|D|= ∆}

15: status← getValidity(P) {Use value of queryValidity}

end if

Then, Q and D are considered similar if DM(D,Q) ≤ δ, where δ is our distance

threshold. The critical point here is that different distributions do not mean different

qualities, since the traffic profile can change over time, even with the same quality

level. Therefore, when the distributions are considered different, the system must learn

the new degree of performance of the network. The Training procedure is then invoked

with Q (see the transition from Block I to Block II in Fig. 1). As described previously,

training consumes system resources, and therefore, there is a trade-off since the lower

δ, the more resources (queries) will be needed. On the other hand, the higher δ, the

lower amount of resources will be required, though at the cost of losing some accuracy

on the SLA assessment. Section 7.3 provides an extensive discussion about the effects

of changing δ.
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5. Tests and Testbeds

In order to validate our proposal we set up three different testbeds: i) synthetic traf-

fic under controlled testbed conditions, ii) synthetic traffic over the European Research

network Géant, and iii) real traffic over a controlled testbed.

5.1. Synthetic traffic under controlled testbed conditions

The first set of tests have been performed under a tightly controlled environment.

We configured two end nodes with Linux Debian in order to generate and collect traffic.

On the core of the testbed we installed two Linux Debian servers, with Traffic Control

and NetEM1 emulation capabilities. This configuration allows us to change the network

conditions according to our needs, and experience a wide range of controlled network

disruptions.

All the links on the testbed were Fast Ethernet without cross traffic. Furthermore,

all the Linux boxes were synchronized by GPS with the NTP and PPS patches on the

kernel for accurate timestamping.

In this testbed, the set of emulated network conditions are:

1. Good Network Conditions: no SLA disruptions and good network behavior all

over the test.

2. Mild Network Disruptions: moderated increase of OWD with periods of high

IPDV and some packet losses. Some traffic disruptions, but only with a few SLA

violations per test.

3. Medium Network Disruptions: similar to the mild network disruptions but with

limited buffers on the routers, which leads to moderate periods of packet losses.

Some SLA violations in many intervals during the test.

4. Severe Network Disruptions: random losses from 1% to 10% with variable

OWD. Severe SLA violations in periodic intervals on the test.

1More information about NetEM can be found at http://tcn.hypert.net/tcmanual.pdf
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All the tests performed have in common that the SLA disruptions are applied at reg-

ular time intervals, combining periods of good behavior with others with disruptions.

We performed tests with Periodic, Poissonian and Synthetic Real Traffic [24] traffic

profiles with all the above network conditions. Using these traffic profiles we have

from predictable packet rates (Periodic) to unpredictable realistic profiles (Synthetic

Real Traffic).

5.2. Synthetic traffic over the European Research network

In this testbed, we performed more than 500 experimental tests using twelve dif-

ferent testbeds across Europe. We performed the tests at different hours, including

weekends, to have a good diversity of cross traffic and congestion levels. The testbeds

were provided by the IST EuQoS (http://www.euqos.eu) partners, covering a total of

5 countries and 4 different access technologies (LAN, xDSL, UMTS and WiFi), sup-

ported by an overlay architecture over the Géant European Network.

We evaluated the performance of our monitoring system by actively generating

UDP traffic on the network with different properties. Specifically, we generated pe-

riodic flows, with varying packet rates, from 16 to 900 packets per second among all

the involved nodes in the testbed. We used different packet sizes ranging from 80 to

1500 bytes per packet. More specifically, we focus on three different sets of tests. The

first one simulates a low rate communication, with small size packets using 64Kbps

of bandwidth. We label this tests as (synthetic) VoIP. The second type of traffic is a

periodic flow with average packet rate of ∼ 96 packets per second, with MTU sized

packets amounting to a total of 1Mbps of UDP traffic. We call this test UDP1. Finally,

the third kind of traffic is an average sized, high rate UDP flow with ∼ 1.4Mbps, we

call this test UDP2.

5.3. Real traffic over a controlled testbed

Generating synthetic traffic gives tight control over the different characteristics of

the traffic: rate, packet size, etc., but on the other hand, it does not reflect how a real

application performs. Therefore, in order to have insights about the behavior of our

system with real applications, we used the local testbed described in Section 5.1 with
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a video streaming application, namely VLC, transmitting high quality video with vari-

able bit rate over the network. In the same way as before, we inserted various disrup-

tions to analyze the accuracy of our SLA assessment system.

6. Evaluation

The validation of the proposal focuses on the assessment of the system’s accuracy,

i.e. the SLA violation detection rate, measured in terms of false negatives (i.e., not

detected SLA violations). It is important to notice that false positives cannot happen

in this environment, since we always query network performance related to unknown

IPAT distribution.

We compare the accuracy of the two presented distance algorithms (i.e. Haus-

dorff and Simplified Hausdorff Distance) and Kullback-Leibler Divergence presented

in [19], against the case for which we have perfect knowledge about the SLA viola-

tions. In particular we analyze the ratio of detected SLA violations against their total

number. We also analyze how many resources are required by the system; such re-

sources are counted in terms of reduction ratio of the required bandwidth used by the

control traffic. Therefore, we compare the cost of reporting information in a per packet

basis, against our solution, which only demands information when there is a change in

the traffic reception profile.

All the issued analysis uses the same set of parameters. In particular, we set up,

as a proof of concept, the following values: distance threshold of δ = 3%, bin width

of w = 3ms, and an acquisition time interval of t = 175ms. Section 7 includes an

experimental analysis about the effects of changing these parameters.

6.1. Methodology

Analyzing all the information obtained from the tests is complex. To ease the

comprehension of the validation process, we unify the evaluation for all the tests and

testbeds under the same methodology as follows:

1. For each test we collect the full trace on both end nodes.
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2. We extract the network performance metrics as described in [4] from per packet

information, using them as reference quality (perfect knowledge), since the pro-

cess gives exact values for the metrics.

3. We identify the different SLA violation periods with the reference results ac-

quired above.

4. We apply off-line our algorithm (by using Kullback-Leibler, Hausdorff and Sim-

plified Hausdorff ). Here we record: i) required control traffic due to Training.

ii) estimated SLA violation periods.

5. Finally, we evaluate the matching between the SLA violations and the ones ob-

tained in Step 3.

We apply our system off-line with the goal of comparing the results obtained by the

perfect knowledge and our system. Nevertheless, in a real deployment our technique

will be applied on-line.

6.2. Accuracy and Resources requirements

In order to study the behavior of our system, we now discuss the achieved accuracy

together with the analysis of the required resources for each algorithm in the different

testbeds.

6.2.1. Synthetic traffic with controlled network

The goal of this synthetic traffic generation is to evaluate the reaction of each algo-

rithm in a controlled environment with the different traffic profiles.

We analyze in Table 1 the Accuracy and the Resource utilization for the different

generated traffic. The accuracy is computed for the overall test duration, counting

the ratio of detected SLA violations over the total. While the required resources are

computed by the ratio of the actual number of queries over the maximum possible

queries per test. Our goal is to achieve high accuracy with low resource consumption.

As it can be observed in the table, the accuracy of the solution is higher for the

extreme cases. When there are Good network conditions in the network we always

estimate correctly, and with low resource consumption in general. This is because our

algorithm assumes correct network behavior by design. In the case of Severe network
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(a) Periodic

Accuracy Resources

Good Mild Medium Severe Good Mild Medium Severe

KL 1.000 1.000 0.987 1.000 0.001 0.256 0.385 0.394

Hausdorff 1.000 1.000 0.088 1.000 0.001 0.020 0.019 0.394

S. Haus. 1.000 1.000 0.868 1.000 0.001 0.130 0.267 0.394

(b) Poisson

Accuracy Resources

Good Mild Medium Severe Good Mild Medium Severe

KL 1.000 0.250 0.940 0.893 0.562 0.572 0.657 0.671

Hausdorff 1.000 0.750 0.067 0.225 0.122 0.143 0.132 0.190

S. Haus. 1.000 1.000 0.994 0.999 0.464 0.601 0.699 0.721

(c) Synthetic Real Traffic

Accuracy Resources

Good Mild Medium Severe Good Mild Medium Severe

KL 1.000 0.667 1.000 1.000 0.002 0.002 0.397 0.397

Hausdorff 1.000 1.000 1.000 1.000 0.002 0.003 0.397 0.397

S. Haus. 1.000 0.667 1.000 1.000 0.002 0.002 0.397 0.397

Table 1: Accuracy and Resources for δ = 0.03

conditions, where our contribution is more useful, we can detect with very good accu-

racy the SLA disruption periods. On the other hand, in the fuzzy case when there are

few SLA violations, the accuracy of the system drops sensibly for some algorithms.

The cause of this is the statistical resolution achieved when there are few SLA viola-

tions: in this case missing a single violation period is statistically significant. Moreover,

in a real deployment, such SLA violations are of no practical interest since they rep-

resent very short, sporadic, periods of light congestion, with no humanly noticeable

impact on the final network behavior.

Comparing the various distance algorithms we can notice some general properties:

first, the better accuracy in most cases is achieved by the Simplified Hausdorff Distance

19



proposed as an extension in this paper, with similar results for Kullback-Leibler. It is

also interesting to highlight the comparatively poor performance obtained with Haus-

dorff, except in the case of synthetic real traffic with Mild SLA violations. This is

caused by the “all-against-all” comparison we pointed out previously.

The second consideration is the resources needed by the Severe, and some Medium

network conditions. As it can be noted, for some traffic profiles, the results are exactly

the same regardless of the used algorithm. This is because the algorithms always query

the ingress node when an unknown IPAT distribution is found; this is a common behav-

ior for all algorithms when bad network conditions are encountered. Hence it forces the

system to query for exact metrics, the minimum number of queries is bounded by the

amount of SLA violations. In our experimental case this is 0.397 as shown in the Table

1. In the specific case of Poissonian Traffic, we need more resources than this lower

bound for Kullback-Leibler and Simplified Hausdorff. Notice though, that requiring

less resources than that implies not detecting some SLA violations.

6.2.2. Synthetic traffic over the European Research network

In this testbed we plan to show the proper accuracy of our proposal in a real network

with random quality, unexpected events and unknown cross traffic with different multi-

hop paths.

In Figure 2 we show the different accuracy results for each algorithm and traffic

profile. The X-axis of the figure represents the test number (normalized to 1) and the

Y-axis the accuracy. The figure considers all the tests, including the ones without SLA

violations. The results show that for both Kullback-Leibler and Simplified Hausdorff

we get perfect accuracy for more than 70% of the tests.

We complement the figure with Table 2, which summarizes the results of our ex-

periments. We show the aggregated total amount of periods with violations, together

with the amount of such periods our algorithm could detect. In the third column we

highlight the overall accuracy and finally, the last column, details the average amount

of resources needed for the reporting.

It is important to notice that most of the failures in the SLA estimation are due

to isolated violations, which are very close to the SLA agreement boundary with no
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Figure 2: Accuracy for Synthetic traffic over the European Network
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(a) Kullback-Leibler

Violations Detected Accuracy Resources

VoIP 7216 6096 0.845 0.198

UDP1 62264 60108 0.965 0.551

UDP2 24863 22265 0.896 0.338

(b) Hausdorff

Violations Detected Accuracy Resources

VoIP 7216 3163 0.438 0.024

UDP1 62264 58003 0.932 0.237

UDP2 24863 21384 0.860 0.221

(c) Simplified Hausdorff

Violations Detected Accuracy Resources

VoIP 7216 4765 0.660 0.044

UDP1 62264 59265 0.952 0.246

UDP2 24863 22345 0.899 0.232

Table 2: Violation detection under a real network, δ = 0.03

practical interest.

In this set of tests, the best performing algorithm is Kullback-Leibler, but at the ex-

penses of using more network resources than the other alternatives. As in the previous

case, Hausdorff falls behind in terms of accuracy, which added to its higher computa-

tional complexity, makes it the worst presented algorithm.

In terms of resources, the average resource usage of the whole system is below 25%.

It is lower when considering VoIP traffic (i.e., around 4%), while the minimum amount

of resources required is ∼ 5.8 ·10−4, and the maximum is 1 (meaning no reduction in

control traffic compared to the per packet reporting is achieved). Further investigating

the tests causing more resource usage, we found that they are the ones representing

highly congested links (in particular xDSL), with very high loss ratios and large amount

of SLA violations (higher than 90% of the bins were severely affected by packet losses).

This forced a large increase in the resource requirements in these specific cases as
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(a) Kullback-Leibler

Accuracy Resources

Good Mild Medium Severe Good Mild Medium Severe

Audio 1.000 1.000 0.999 0.997 0.962 0.966 0.947 0.728

Video 1.000 0.450 0.621 0.874 0.061 0.074 0.085 0.569

(b) Simplified Hausdorff

Accuracy Resources

Good Mild Medium Severe Good Mild Medium Severe

Audio 1.000 0.999 0.979 0.975 0.114 0.114 0.144 0.397

Video 1.000 0.450 0.677 0.848 0.032 0.035 0.050 0.407

Table 3: Overall detection and resources for VLC traffic, δ = 3%

expected.

6.2.3. Real traffic over a controlled testbed

In this last set of tests, it is intended to observe the performance of our algorithms

under real traffic with controlled network behavior. In fact, the forced SLA violations

on the testbed follow the same patterns as we introduced in the synthetic traffic case

(i.e., Good, Mild, Medium and Severe).

We used VLC to perform the tests. Since the application generates two flows, one

for audio and the other for video, we show them separately in Table 3. There, we

can see the overall accuracy for Kullback-Leibler and Simplified Hausdorff, omitting

Hausdorff given its bad accuracy.

The accuracy in detecting the studied SLA violations is higher than 99% for the

audio flows, dropping sensibly in the case of video flows. The causes of such difference

in accuracy are unknown yet and subject to further study. Nevertheless, in the case of

Severe network conditions the accuracy is still higher than∼ 85% with both algorithms.

Regarding the resources, for audio flows, in the case of Simplified Hausdorff, they

range from ∼ 11% for Good network behavior to ∼ 40% in the case of Severe SLA

disruptions. For the video flows it ranges from ∼ 3% to ∼ 40%. It can be noted that

the cases for which the maximum resources are required are consistent with the ones
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found on the Synthetic Traffic with Controlled Network: the packet losses and delay

constraints were similar in this two cases. Again, using Kullback-Leibler, despite of

having slightly better accuracy, requires ∼ 20% more resources than Simplified Haus-

dorff.

7. Parameter selection analysis

In this section we introduce an experimental analysis of the effects of varying the

various parameters of the system. We perform tests by changing the three main param-

eters of the system, namely, the time interval t, the bin size w and the threshold δ. The

full analytical study of the impact of such parameters on the system performance can

be found in [25].

7.1. The acquisition interval t

As we discussed previously, increasing the acquisition time interval gives our sys-

tem more statistical soundness, due to the presence of more samples in the acquired

distribution. But at the same time it gives less responsiveness to our system.

We performed the analysis by doing tests with several values of t. In particular we

set up our VLC testbed to use the following values of t: 50,100,175,300,500,1000,

2000 and 3000 milliseconds. Then we estimated the SLA violations by using our three

algorithms.

Figure 3 summarizes the obtained results for all these values. Among the results we

omit the Good quality tests since its accuracy is always 1 and the resource consumption

is in all cases lower than the other levels of disruption.

The results show the expected behavior in all the cases. The trend is a clear im-

provement in the accuracy of the system as the time interval increases. The main

reason for this is the increasing amount of information that improves the statistical

significance.

As it can be noted there is a considerable drop in accuracy for audio traffic in the

case of Simplified Hausdorff and in Kullback-Leibler for Mild traffic conditions (in

fact it drops to 50%, in the specific case of 500ms). The cause for this is that when
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Figure 3: Time Acquisition interval effect over VLC Audio Traffic
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aggregating more packets into the bin, with few packet losses, the aggregated quality

for the period gets “better” in the sense that the packet loss ratio is reduced. Therefore

the number of total bins with violations drops (in our case to 2 for the whole test),

and the three algorithms have more difficulty to detect them (in our case only one is

correctly detected). Also as expected, this behavior is repeated for the case of Medium

traffic disruptions for higher bin sizes.

In the case of video flows, the results differ considerably. This is because this traffic

uses higher packet rates, which at the end, implies that more packets get dropped. So,

increasing the time interval helps for a better estimation.

As we already detected in the evaluation section both Simplified Hausdorff and

Kullback-Leibler have better accuracy than Hausdorff. By comparing both algorithms,

we noticed that, in general, Kullback-Leibler has better accuracy, but requires too much

resources in terms of bandwidth. In any case for high values of t, Simplified Hausdorff,

while using a fairly reasonable amount of resources, accomplishes a similar degree of

accuracy.

Summarizing the findings about the accuracy, we can see that in general hav-

ing large bin sizes helps the estimation. But this could be misleading, because for

large timescales, small disruptions get undetected, while being relevant for shorter

timescales. This is not really a fault of our system but the actual reduction in the

packet loss ratio per time interval (therefore that traffic has a validity higher than ν).

7.2. Impact of the bin size w

Changing the bin size is critical to the accuracy of the system. Now we study its

effects from the experimental point of view. As a proof of concept we focus our study

on the Real Traffic over a controlled testbed, but our analysis could be extended to any

other type of traffic in our system with similar results.

The analysis is performed by using w values from 1 to 10 milliseconds of IPAT. In

the rest of the section we study these different values with the three distance algorithms,

to see the effect on the accuracy and used resources.

In Figure 4 we show the results with values of t = 175ms and δ = 3%, for the

different w. The results highlight only the accuracy and resources of the audio flows.
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Similar results are obtained with the video stream.
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Figure 4: Bin Size effect over VLC Audio Traffic

It can be noted that the intuitive idea of resource consumption and accuracy is held

in all the cases in general, i.e. the bigger the bin size the lower the accuracy with less

resource consumption, specially in Simplified Hausdorff.

For Kullback-Leibler, in the worst case the accuracy in the SLA Violation Detection

drops from 1 to 0.89 for the Mild case in audio flows. In the results obtained for

Medium and Severe, the accuracy is constant in all the cases.

As expected the resource consumption for Kullback-Leibler with audio flows is

consistent, reducing in ∼ 0.10 units from w = 1 to w = 10.
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In the case of Hausdorff, the decrease in accuracy is more noticeable in the Severe

case. It is fairly well estimated for small bin sizes but its accuracy drops very fast as

the bin size gets bigger. This highlights the point that increasing the bin size helps

reducing the resolution. That is, the system considers similar groups of IPAT which,

in reality, are very different. Moreover here we can see in more details the lack of

accuracy provided by the “all-against-all” mechanism used by Hausdorff.

Regarding the used resources, their consumption is slightly reduced due to the in-

crease of the bin size, but it is far less noticeable than in the case of Kullback-Leibler.

This is mostly caused by the fact that the bin size increase favors a reduction of the

resources, while the casual increase in accuracy favors the use of more resources as

more queries are issued.

Finally in the case of Simplified Hausdorff the obtained accuracy is reduced as the

w increases.

One interesting point to notice is that the bin size impacts more strongly Simplified

Hausdorff than Kullback-Leibler algorithms. The reason is that geometric distances

are more deterministic (they are a real metric indeed) than the relative entropy used

by Kullback-Leibler, which, being dimensionless, do not have this spatiality difference

found on physical metrics.

7.3. Sensitivity analysis for δ

As we already discussed, querying the other end-point to acquire the network status

is one of the bottlenecks of the system. The querying is triggered when D(D,Q) ≥

δ (Step 7 of Algorithm 2). Hence δ and the traffic itself determine the amount of

queries of the system. Figure 5 details the effects of changing δ between 0 and 10%

for controlled traffic generation with Poissonian Traffic using our Simplified Hausdorff

Distance based algorithm (the study would be similar for the other algorithms).

All the subfigures contain the Accuracy in the left Y-Axis with solid line, and the

Resources needed on the right Y-Axis with dotted line. The X-Axis contains the dif-

ferent values for δ. As it can be observed, in the case of Good and Severe traffic con-

ditions, the effects of increasing the thresholds permits the reduction of the required

resources given the predictability of the outcome, especially in the Good case where
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Figure 5: Distance Effect Poisson traffic. Accuracy and Resources are on the Y-Axis and each considered

distance (in %) is on the X-Axis

the estimation is always correct. Again the important trade-off is on the fuzzy cases

for which not much SLA violations occur on the network. In that case, increasing the

thresholds has a very noticeable effect on the final accuracy of the system, due to the

statistical error incurred when having a small number of samples. It becomes more

noticeable when there are fewer disruptions (Mild case in the figure).

8. Conclusions

We have presented a novel approach for on-line SLA assessment, where differently

of previous research, our work separates and reduces the performance metric computa-

tion and the interaction between the edge nodes of the network. This is accomplished

by: i) a smart algorithm for gathering the distribution of Inter-Packet Arrival Time

(IPAT); ii) distance algorithms to compare the distributions; and iii) a robust Training

methodology that delivers a very competitive solution regarding SLA violation detec-

tion.

As an additional contribution, we improved Hausdorff Distance, by using the knowl-
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edge about the data we are dealing with. With this improved version we can efficiently

infer the network quality with very good accuracy and a very low amount of resources.

We validated our methodology with a set of different tests, which involved a con-

trolled and European-wide testbeds, using synthetic and real traffic. The experimental

results show that we can reduce the required resources considerably, with a low effect

on the final accuracy of the system. Though not proved formally, we also validate the

strong relationship that exists between IPAT distributions and network performances.

As lines left for further research, an interesting upgrade of the system would be to

infer the real metrics of the network by comparing ingress and egress packet arrival

times (Inter Packet Emission Time with Inter Packet Arrival Time).
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