M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts, Journal of the American Chemical Society, vol.114, issue.14, pp.5883-5884, 1992.
DOI : 10.1021/ja00040a074

A. J. Downard, Electrochemically Assisted Covalent Modification of Carbon Electrodes, Electroanalysis, vol.142, issue.14, pp.1085-1096, 2000.
DOI : 10.1002/1521-4109(200010)12:14<1085::AID-ELAN1085>3.0.CO;2-A

J. Pinson and F. Podvorica, Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts, Chemical Society Reviews, vol.17, issue.551, pp.429-439, 2005.
DOI : 10.1039/b406228k

R. L. Mccreery, Advanced Carbon Electrode Materials for Molecular Electrochemistry, Chemical Reviews, vol.108, issue.7, pp.2646-2687, 2008.
DOI : 10.1021/cr068076m

A. M. Mahmoud, A. J. Bergren, N. Pekas, and R. L. Mccreery, Towards Integrated Molecular Electronic Devices: Characterization of Molecular Layer Integrity During Fabrication Processes, Advanced Functional Materials, vol.63, issue.12, pp.2273-2281, 2011.
DOI : 10.1002/adfm.201002496

J. T. Abrahamson, C. Song, J. H. Hu, J. M. Forman, S. G. Mahajan et al., Synthesis and Energy Release of Nitrobenzene-Functionalized Single-Walled Carbon Nanotubes, Chemistry of Materials, vol.23, issue.20, pp.4557-4562, 2011.
DOI : 10.1021/cm201947y

Z. Guo, F. Du, D. Ren, Y. Chen, J. Zheng et al., Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor???acceptor nanohybrid, J. Mater. Chem., vol.36, issue.29, pp.3021-3030, 2006.
DOI : 10.1039/B602349E

A. Kasry, A. A. Afzali, S. Oida, S. Han, B. Menges et al., Detection of Biomolecules via Benign Surface Modification of Graphene, Chemistry of Materials, vol.23, issue.22, pp.4879-4881, 2011.
DOI : 10.1021/cm201577k

T. Ramakrishnappa, M. Pandurangappa, and D. H. Nagaraju, Anthraquinone functionalized carbon composite electrode: Application to ammonia sensing, Sensors and Actuators B: Chemical, vol.155, issue.2, pp.626-631, 2011.
DOI : 10.1016/j.snb.2011.01.020

H. M. Nassef, A. Radi, and C. O. Sullivan, Simultaneous detection of ascorbate and uric acid using a selectively catalytic surface, Analytica Chimica Acta, vol.583, issue.1, pp.182-189, 2007.
DOI : 10.1016/j.aca.2006.10.004

D. Chung, K. Kim, and S. Choi, Electrochemical DNA biosensor based on avidin???biotin conjugation for influenza virus (type A) detection, Applied Surface Science, vol.257, issue.22, pp.9390-9396, 2011.
DOI : 10.1016/j.apsusc.2011.06.015

S. M. Khor, G. Liu, J. R. Peterson, S. G. Iyengar, and J. J. Gooding, An Electrochemical Immunobiosensor for Direct Detection of Veterinary Drug Residues in Undiluted Complex Matrices, Electroanalysis, vol.37, issue.8, pp.1797-1804, 2011.
DOI : 10.1002/elan.201100205

D. Evrard, F. Lambert, C. Policar, V. Balland, and B. Limoges, Electrochemical Functionalization of Carbon Surfaces by Aromatic Azide or Alkyne Molecules: A Versatile Platform for Click Chemistry, Chemistry - A European Journal, vol.6, issue.30, pp.9286-9291, 2008.
DOI : 10.1002/chem.200801168

URL : https://hal.archives-ouvertes.fr/hal-00422151

Y. R. Leroux, F. Hui, J. Noel, C. Roux, A. J. Downard et al., Design of Robust Binary Film onto Carbon Surface Using Diazonium Electrochemistry, Langmuir, vol.27, issue.17, pp.11222-11228, 2011.
DOI : 10.1021/la202250y

URL : https://hal.archives-ouvertes.fr/hal-00632547

S. Boland, F. Barriere, and D. Leech, -Generated Aryldiazonium Cation, Langmuir, vol.24, issue.12, pp.6351-6358, 2008.
DOI : 10.1021/la7031972

URL : https://hal.archives-ouvertes.fr/in2p3-00908773

N. Yang, J. Yu, H. Uetsuka, and C. E. Nebel, Characterization of diamond surface terminations using electrochemical grafting with diazonium salts, Electrochemistry Communications, vol.11, issue.11, pp.2237-2240, 2009.
DOI : 10.1016/j.elecom.2009.09.039

P. A. Brooksby and A. J. Downard, Nanoscale Patterning of Flat Carbon Surfaces by Scanning Probe Lithography and Electrochemistry, Langmuir, vol.21, issue.5, pp.1672-1675, 2005.
DOI : 10.1021/la0468848

V. Vijaikanth, J. Capon, F. Gloaguen, P. Schollhammer, and J. Talarmin, Chemically modified electrode based on an organometallic model of the [FeFe] hydrogenase active center, Electrochemistry Communications, vol.7, issue.4, pp.427-430, 2005.
DOI : 10.1016/j.elecom.2005.02.019

A. Benedetto, M. Balog, P. Viel, F. L. Derf, M. Salle et al., Electro-reduction of diazonium salts on gold: Why do we observe multi-peaks?, Electrochimica Acta, vol.53, issue.24, pp.7117-7122, 2008.
DOI : 10.1016/j.electacta.2008.05.001

URL : https://hal.archives-ouvertes.fr/cea-01056555

M. Ceccato, L. T. Nielsen, J. Iruthayaraj, M. Hinge, S. U. Pedersen et al., Nitrophenyl Groups in Diazonium-Generated Multilayered Films: Which are Electrochemically Responsive?, Langmuir, vol.26, issue.13, pp.10812-10821, 2010.
DOI : 10.1021/la1006428

K. K. Cline, L. Baxter, D. Lockwood, R. Saylor, and A. Stalzer, Nonaqueous synthesis and reduction of diazonium ions (without isolation) to modify glassy carbon electrodes using mild electrografting conditions, Journal of Electroanalytical Chemistry, vol.633, issue.2, pp.283-290, 2009.
DOI : 10.1016/j.jelechem.2009.06.013

R. Moscoso, J. Carbajo, M. Lopez, L. J. Nunez-vergara, and J. A. Squella, A simple derivatization of multiwalled carbon nanotubes with nitroaromatics in aqueous media: Modification with nitroso/hydroxylamine groups, Electrochemistry Communications, vol.13, issue.2, pp.217-220, 2011.
DOI : 10.1016/j.elecom.2010.12.027

B. Ortiz, C. Saby, G. Y. Champagne, and D. Belanger, Electrochemical modification of a carbon electrode using aromatic diazonium salts. 2. Electrochemistry of 4-nitrophenyl modified glassy carbon electrodes in aqueous media, Journal of Electroanalytical Chemistry, vol.455, issue.1-2, pp.75-81, 1998.
DOI : 10.1016/S0022-0728(98)00252-6

C. Saby, B. Ortiz, G. Y. Champagne, and D. Belanger, Electrochemical Modification of Glassy Carbon Electrode Using Aromatic Diazonium Salts. 1. Blocking Effect of 4-Nitrophenyl and 4-Carboxyphenyl Groups, Langmuir, vol.13, issue.25, pp.6805-6813, 1997.
DOI : 10.1021/la961033o

P. A. Brooksby and A. J. Downard, Electrochemical and Atomic Force Microscopy Study of Carbon Surface Modification via Diazonium Reduction in Aqueous and Acetonitrile Solutions, Langmuir, vol.20, issue.12, pp.5038-5045, 2004.
DOI : 10.1021/la049616i

P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, Journal of the American Chemical Society, vol.119, issue.1, pp.201-207, 1997.
DOI : 10.1021/ja963354s

S. Baranton and D. Belanger, In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface, Electrochimica Acta, vol.53, issue.23, pp.6961-6967, 2008.
DOI : 10.1016/j.electacta.2008.02.105

A. L. Gui, G. Liu, M. Chockalingam, G. L. Saux, E. Luais et al., A Comparative Study of Electrochemical Reduction of 4-Nitrophenyl Covalently Grafted on Gold and Carbon, Electroanalysis, vol.106, issue.16, pp.1824-1830, 2010.
DOI : 10.1002/elan.201000164

S. Baranton and D. Belanger, Electrochemical Derivatization of Carbon Surface by Reduction of in Situ Generated Diazonium Cations, The Journal of Physical Chemistry B, vol.109, issue.51, pp.24401-24410, 2005.
DOI : 10.1021/jp054513+

M. Delamar, G. Desarmot, O. Fagebaume, R. Hitmi, J. Pinson et al., Modification of carbon fiber surfaces by electrochemical reduction of aryl diazonium salts: Application to carbon epoxy composites, Carbon, vol.35, issue.6, pp.801-807, 1997.
DOI : 10.1016/S0008-6223(97)00010-9

J. Haccoun, C. Vautrin-ul, A. Chausse, and A. Adenier, Electrochemical grafting of organic coating onto gold surfaces: Influence of the electrochemical conditions on the grafting of nitrobenzene diazonium salt, Progress in Organic Coatings, vol.63, issue.1, pp.18-24, 2008.
DOI : 10.1016/j.porgcoat.2008.04.001

M. A. Fryling, J. Lhao, and R. L. Mccreery, Resonance Raman Observation of Surface Carbonyl Groups on Carbon Electrodes Following Dinitrophenylhydrazine Derivatization, Analytical Chemistry, vol.67, issue.5, pp.967-975, 1995.
DOI : 10.1021/ac00101a026

G. G. Wildgoose, P. Abiman, and R. G. Compton, Characterising chemical functionality on carbon surfaces, Journal of Materials Chemistry, vol.60, issue.98, pp.4875-4886, 2009.
DOI : 10.1039/b821027f

A. J. Bard and L. R. Faulkner, Electrochemical methods, second ed., Fundamentals and Applications, 2001.

J. Lehr, B. E. Williamson, and A. J. Downard, Spontaneous Grafting of Nitrophenyl Groups to Planar Glassy Carbon Substrates: Evidence for Two Mechanisms, The Journal of Physical Chemistry C, vol.115, issue.14, pp.6629-6634, 2009.
DOI : 10.1021/jp111838r

J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, 4-Nitrothiophenol SAM on Au(111) Investigated by in Situ STM, Electrochemistry, and XPS, Langmuir, vol.17, issue.11, pp.3454-3459, 2001.
DOI : 10.1021/la001775o

D. Briggs and M. P. Seah, Practical Surface Analysis: by Auger and x-Ray Photoelectron Spectroscopy, 1983.

P. Doppelt, G. Hallais, J. Pinson, F. Podvorica, and S. Verneyre, Surface Modification of Conducting Substrates. Existence of Azo Bonds in the Structure of Organic Layers Obtained from Diazonium Salts, Chemistry of Materials, vol.19, issue.18, pp.4570-4575, 2007.
DOI : 10.1021/cm0700551

A. Adenier, E. Cabet-deliry, A. Chausse, S. Griveau, F. Mercier et al., Grafting of Nitrophenyl Groups on Carbon and Metallic Surfaces without Electrochemical Induction, Chemistry of Materials, vol.17, issue.3, pp.491-501, 2005.
DOI : 10.1021/cm0490625

URL : https://hal.archives-ouvertes.fr/hal-00157436