R. Feeney and S. P. Kounaves, Microfabricated Ultramicroelectrode Arrays: Developments, Advances, and Applications in Environmental Analysis, Electroanalysis, vol.15, issue.25, pp.677-684, 2000.
DOI : 10.1002/1521-4109(200005)12:9<677::AID-ELAN677>3.0.CO;2-4

J. Castillo, S. Gaspar, S. Leth, M. Niculescu, A. Mortari et al., Biosensors for life quality, Sensors and Actuators B: Chemical, vol.102, issue.2, pp.179-194, 2004.
DOI : 10.1016/j.snb.2004.04.084

I. J. Allan, B. Vrana, R. Greenwood, G. A. Milles, B. Roig et al., A ???toolbox??? for biological and chemical monitoring requirements for the European Union's Water Framework Directive, Talanta, vol.69, issue.2, pp.302-322, 2006.
DOI : 10.1016/j.talanta.2005.09.043

C. Spegel, A. Heiskanen, L. H. Skjolding, and J. Emneus, Chip Based Electroanalytical Systems for Cell Analysis, Electroanalysis, vol.313, issue.74, pp.680-702, 2008.
DOI : 10.1002/elan.200704130

S. A. Wring and J. P. Hart, Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review, The Analyst, vol.117, issue.8, pp.1215-1229, 1992.
DOI : 10.1039/an9921701215

S. Lashi and M. Mascini, Planar electrochemical sensors for biomedical applications, Medical Engineering & Physics, vol.28, issue.10, pp.934-943, 2006.
DOI : 10.1016/j.medengphy.2006.05.006

J. Wang, Analytical Electrochemistry, 2006.
DOI : 10.1002/0471790303

R. Kohen, Skin antioxidants: Their role in aging and in oxidative stress ??? New approaches for their evaluation, Biomedicine & Pharmacotherapy, vol.53, issue.4, pp.181-192, 1999.
DOI : 10.1016/S0753-3322(99)80087-0

C. S. Sander, H. Chang, F. Hamm, P. Elsner, and J. J. Thiele, Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis, International Journal of Dermatology, vol.195, issue.5, pp.326-335, 2004.
DOI : 10.1046/j.1365-2133.1998.02447.x

S. Arbault, N. Sojic, D. Bruce, C. Amatore, A. Sarasin et al., Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes, Carcinogenesis, vol.25, issue.4, pp.509-515, 2004.
DOI : 10.1093/carcin/bgh046

D. R. Bickers and M. Athar, Oxidative Stress in the Pathogenesis of Skin Disease, Journal of Investigative Dermatology, vol.126, issue.12, pp.2565-2575, 2006.
DOI : 10.1038/sj.jid.5700340

J. J. Thiele and L. Packer, Antioxidant defense systems in skin, Journal of Toxicology: Cutaneous and Ocular Toxicology, vol.7, issue.1-2, pp.119-160, 2002.
DOI : 10.1111/1523-1747.ep12258527

A. Ruffien-ciszak, P. Gros, M. Comtat, A. M. Schmitt, E. Questel et al., Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry, Journal of Pharmaceutical and Biomedical Analysis, vol.40, issue.1, pp.162-167, 2006.
DOI : 10.1016/j.jpba.2005.05.035

A. M. Bonastre and P. N. Bartlett, Electrodeposition of PANi films on platinum needle type microelectrodes. Application to the oxidation of ascorbate in human plasma, Analytica Chimica Acta, vol.676, issue.1-2, pp.1-8, 2010.
DOI : 10.1016/j.aca.2010.07.003

F. Sekli-belaidi, P. Temple-boyer, and P. Gros, Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids, Journal of Electroanalytical Chemistry, vol.647, issue.2, pp.159-168, 2010.
DOI : 10.1016/j.jelechem.2010.06.007

X. Xu, S. Zhang, H. Chen, and J. Kong, Integration of electrochemistry in micro-total analysis systems for biochemical assays: Recent developments, Talanta, vol.80, issue.1, pp.8-18, 2009.
DOI : 10.1016/j.talanta.2009.06.039

G. C. Fiaccabrino and M. Koudelka-hep, Thin-Film Microfabrication of Electrochemical Transducers, Electroanalysis, vol.17, issue.25, pp.217-222, 1998.
DOI : 10.1002/(SICI)1521-4109(199804)10:4<217::AID-ELAN217>3.0.CO;2-W

J. W. Schultze and V. Tsakova, Electrochemical microsystem technologies: from fundamental research to technical systems, Electrochimica Acta, vol.44, issue.21-22, pp.3605-3627, 1999.
DOI : 10.1016/S0013-4686(99)00065-1

K. Stulik, C. Amatore, K. Kolub, V. Marecek, and W. Kutner, Microelectrodes: definitions , characterization and applications, Pure and Applied Chemistry, vol.72, pp.1483-1492, 2000.

H. Suzuki, Advances in the Microfabrication of Electrochemical Sensors and Systems, Electroanalysis, vol.33, issue.14, pp.703-715, 2000.
DOI : 10.1002/1521-4109(200005)12:9<703::AID-ELAN703>3.0.CO;2-7

B. Lakard, J. C. Jeannot, M. Spajer, G. Herlem, M. De-labachelerie et al., Fabrication of a miniaturized cell using microsystem technologies for electrochemical applications, Electrochimica Acta, vol.50, issue.9, pp.50-1863, 2005.
DOI : 10.1016/j.electacta.2004.08.038

URL : https://hal.archives-ouvertes.fr/hal-00123007

Y. P. Chen, Y. Zhao, J. Chu, S. Y. Liu, W. W. Li et al., Fabrication and characterization of an innovative integrated solid-state microelectrode, Electrochimica Acta, vol.55, issue.20, pp.55-5984, 2010.
DOI : 10.1016/j.electacta.2010.05.053

A. Schwake, B. Ross, and K. Camman, Chrono amperometric determination of hydrogen peroxide in swimming pool water using an ultramicroelectrode array, Sensors and Actuators B: Chemical, vol.46, issue.3, pp.242-248, 1998.
DOI : 10.1016/S0925-4005(98)00124-5

K. Morimoto, S. Upadhyay, T. Higashiyama, N. Ohgami, H. Kusakabe et al., Electrochemical microsystem with porous matrix packed-beds for enzyme analysis, Sensors and Actuators B: Chemical, vol.124, issue.2, pp.477-485, 2007.
DOI : 10.1016/j.snb.2007.01.023

M. Miyashita, N. Ito, S. Ikeda, T. Murayama, K. Oguma et al., Development of urine glucose meter based on micro-planer amperometric biosensor and its clinical application for self-monitoring of urine glucose, Biosensors and Bioelectronics, vol.24, issue.5, pp.1336-1340, 2009.
DOI : 10.1016/j.bios.2008.07.072

D. Kim, I. B. Goldberg, and J. W. Judy, Microfabricated electrochemical nitrate sensor using double-potential-step chronocoulometry, Sensors and Actuators B: Chemical, vol.135, issue.2, pp.618-624, 2009.
DOI : 10.1016/j.snb.2008.09.022

C. O. Parker, Y. H. Lanyon, M. Manning, D. W. Arrigan, and I. E. , Electrochemical immunochip sensor for aflatoxin M1 detection, Analytical Chemistry, pp.81-5291, 2009.

N. Triroj, M. A. Lapierre-devlin, S. O. Kelley, and R. Beresford, Microfluidic Three-Electrode Cell Array for Low-Current Electrochemical Detection, IEEE Sensors Journal, vol.6, issue.6, pp.1395-1402, 2006.
DOI : 10.1109/JSEN.2006.884444

R. Popovtzer, T. Neufeld, A. Popovtzer, I. Rivkin, R. Margalit et al., Electrochemical lab on a chip for high-throughput analysis of anticancer drugs efficiency, Nanomedicine: Nanotechnology, Biology and Medicine, vol.4, issue.2, pp.121-126, 2008.
DOI : 10.1016/j.nano.2008.03.002

N. Pereira-rodriguez, Y. Sakai, and T. Fujii, Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen, Sensors and Actuators B: Chemical, vol.132, issue.2, pp.608-613, 2008.
DOI : 10.1016/j.snb.2007.12.025

R. S. Pai, K. M. Walsh, M. M. Crain, T. J. Roussel, D. J. Jackson et al., Fully Integrated Three-Dimensional Electrodes for Electrochemical Detection in Microchips: Fabrication, Characterization, and Applications, Analytical Chemistry, vol.81, issue.12, pp.81-4762, 2009.
DOI : 10.1021/ac9002529

O. Frey, P. D. Van-der-wal, S. Spieth, O. Brett, K. Seidl et al., Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical detection, Journal of Neural Engineering, vol.8, pp.1-9, 2011.

A. Altuna, L. Menendez-de-la-prida, E. Bellistri, G. Gabriel, A. Guilera et al., SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording, Biosensors and Bioelectronics, vol.37, issue.1, pp.1-5, 2012.
DOI : 10.1016/j.bios.2012.03.039

A. Saito, A Theoretical Study on the Diffusion Current at the Stationary Electrodes of Circular and Narrow Band Types, Review of Polarography, vol.15, issue.6, pp.177-187, 1968.
DOI : 10.5189/revpolarography.15.177

S. J. Konopka and B. Mcduffie, Diffusion coefficients of ferri-and ferro-cyanide ions in aqueous media using twin-electrode thin-layer electrochemistry, Analytical Chemistry, pp.42-1741, 1970.

J. Legrand, E. Dumont, J. Comiti, and F. Fayolle, Diffusion coefficients of ferricyanide ions in polymeric solutions ??? comparison of different experimental methods, Electrochimica Acta, vol.45, issue.11, pp.1791-1803, 2000.
DOI : 10.1016/S0013-4686(99)00391-6

H. Angerstein-kozlowska, B. E. Conway, and W. B. Sharp, The real condition of electrochemically oxidized platinum surfaces, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.43, issue.1, pp.9-36, 1973.
DOI : 10.1016/S0022-0728(73)80307-9

B. V. Tilak, B. E. Conway, and H. Angerstein-kozlowska, The real condition of oxidized pt electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.48, issue.1, pp.1-23, 1973.
DOI : 10.1016/S0022-0728(73)80290-6

J. Barber, S. Morin, and B. E. Conway, Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H, Journal of Electroanalytical Chemistry, vol.446, issue.1-2, pp.125-138, 1998.
DOI : 10.1016/S0022-0728(97)00652-9

H. Angerstein-kozlowska, B. E. Conway, B. Barnett, and J. Mozota, The role of ion adsorption in surface oxide formation and reduction at noble metals: General features of the surface process, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.100, issue.1-2, pp.417-446, 1979.
DOI : 10.1016/S0022-0728(79)80176-X

A. Berduque, B. Y. Layon, V. Beni, G. Herzog, Y. E. Watson et al., Voltammetric characterisation of silicon-based microelectrode arrays and their application to mercury-free stripping voltammetry of copper ions, Talanta, vol.71, issue.3, pp.1022-1030, 2007.
DOI : 10.1016/j.talanta.2006.05.090

H. Möller and P. C. Postorius, The electrochemistry of gold???platinum alloys, Journal of Electroanalytical Chemistry, vol.570, issue.2, pp.243-255, 2004.
DOI : 10.1016/j.jelechem.2004.04.003

S. P. Pappas, Photoinitiation of cationic and concurrent radical cationic polymerization, Process in Organic Coatings, pp.35-64, 1985.

B. J. Polk, A. Stelzenmuller, G. Mijares, W. Mac-crehan, M. Gaitan et al., Ag/AgCl microelectrodes with improved stability for microfluidics, Sensors and Actuators B: Chemical, vol.114, issue.1, pp.239-247, 2006.
DOI : 10.1016/j.snb.2005.03.121

M. W. Shinwari, D. Zhitomirsky, I. A. Deen, P. R. Selvaganapathy, M. J. Deen et al., Microfabricated Reference Electrodes and their Biosensing Applications, Microfabricated reference electrodes and their biosensing applications, pp.1679-1715, 2010.
DOI : 10.3390/s100301679

A. M. Sullivan and P. A. Kohl, Electro-oxidation of ascorbic acid in an aqueous citrate buffer solution, Plating and Surface Finishing, pp.56-60, 1998.

Y. C. Luo, J. S. Do, and C. C. Liu, An amperometric uric acid biosensor based on modified Ir???C electrode, Biosensors and Bioelectronics, vol.22, issue.4, pp.482-488, 2006.
DOI : 10.1016/j.bios.2006.07.013

]. Y. Zhao, J. Bai, L. Wang, X. E. Huang, H. Wang et al., Simultaneous electrochemical determination of uric acid and ascorbic acid using l-cystein self-assembled gold electrode, International Journal of Electrochemical Science, vol.1, pp.363-371, 2006.

L. Wang, J. Y. Bai, P. F. Huang, H. J. Wang, X. W. Wu et al., Selective determination of uric acid in the presence of ascorbic acid using a penicillamine self-assembled gold electrode, Microchimica Acta, vol.16, issue.1-2, pp.73-78, 2007.
DOI : 10.1007/s00604-006-0656-0

H. M. Sheu, S. C. Chao, T. W. Wong, J. Y. Lee, and J. C. Tsai, Human skin surface lipid film: an ultrastructural study and interaction with corneocytes and intercellular lipid lamellae of the stratum corneum, British Journal of Dermatology, vol.16, issue.3, pp.385-391, 1999.
DOI : 10.1046/j.1365-2133.1999.02697.x

C. Pailer-mattei, S. Nicoli, R. Pirot, R. Vargiolu, and H. Zahouani, A new approach to describe the skin surface physical properties in vivo, Colloids and Surfaces B: Biointerfaces, vol.68, issue.2, pp.68-200, 2009.
DOI : 10.1016/j.colsurfb.2008.10.005

R. Kohen, E. Vellaichamy, J. Hrbac, I. Gati, and O. Tirosh, Quantification of the overall REACTIVE OXYGEN SPECIES scavenging capacity of biological fluids and tissues, Free Radical Biology and Medicine, vol.28, issue.6, pp.871-879, 2000.
DOI : 10.1016/S0891-5849(00)00191-X

C. Biographies and . Christophe, She received her Engineer's Degree in materials science from the Institut National Polytechnique de Toulouse " (France) in 2006. She joined the " Laboratoire d'Architecture et d'Analyse des Systèmes " from the French " Centre National de la Recherche Scientifique, LAAS-CNRS) in 2007. She is working on the development of electrochemical microsensors for chemical and biochemical detection, 1981.

F. and S. Belaidi, She received her Master's Degree in process and environmental engineering from the Institut National des Sciences Appliquées de Toulouse, She joined the " Laboratoire de Génie Chimique " (LGC) from the University of Toulouse (France) in 2007. She is working on the development of electrochemical microsensors for chemical and biochemical detection, 1980.

P. Gros, He graduated in Physical Chemistry in 1992 and received his PhD degree in Chemical Engineering in 1996 at the University Paul Sabatier in Toulouse. He is now Professor in Electroanalytical Engineering in the Chemical Engineering Laboratory He is currently working on the development of electrochemical (bio)sensors, 1970.

. He and . French, Groupe de Recherche sur l'Oncogénèse, les Ultraviolets et la Pigmentation Cutanée Laboratoire Pierre FABRE Dermocosmetique " company in Toulouse. Since 2004, he is in charge of the " Skin Photobiology department, He is working on clinical studies on healthy volunteers, 1994.