F. Gojny, M. Wichmann, U. Köpke, B. Fiedler, and K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites ??? A comparative study, Composites Science and Technology, vol.65, issue.15-16, pp.2363-71, 2004.
DOI : 10.1016/j.compscitech.2005.04.021

E. Sawi, I. Olivier, P. Demont, P. Bougherara, and H. , Investigation of the effect of double-walled carbon nanotubes on the curing reaction kinetics and shear flow of an epoxy resin, Journal of Applied Polymer Science, vol.1, issue.1, pp.358-66, 2012.
DOI : 10.1002/app.36988

URL : https://hal.archives-ouvertes.fr/hal-00825640

S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, DC and AC Conductivity of Carbon Nanotubes???Polyepoxy Composites, Macromolecules, vol.36, issue.14, pp.5187-94, 2003.
DOI : 10.1021/ma021263b

URL : https://hal.archives-ouvertes.fr/hal-00920407

F. Gojny, M. Wichmann, B. Fiedler, I. Kinloch, W. Bauhofer et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, vol.47, issue.6, pp.2036-2081, 2006.
DOI : 10.1016/j.polymer.2006.01.029

A. Vavouliotis, E. Fiamegou, P. Karapappas, G. Psarras, and V. Kostopoulos, DC and AC conductivity in epoxy resin/multiwall carbon nanotubes percolative system, Polymer Composites, vol.57, issue.3, pp.1874-80, 2010.
DOI : 10.1002/pc.20981

A. Maillot, H. Luinge, and K. Schulte, CNT modified carbon fiber Reinforced composites for aerospace applications, Proceedings of the 16th international conference on composite structures, 2011.

A. Dibenedetto, Prediction of the glass transition temperature of polymers: A model based on the principle of corresponding states, Journal of Polymer Science Part B: Polymer Physics, vol.25, issue.9, pp.1949-69, 1987.
DOI : 10.1002/polb.1987.090250914

J. Pascault and R. Williams, Glass transition temperature versus conversion relationships for thermosetting polymers, Journal of Polymer Science Part B: Polymer Physics, vol.28, issue.1, pp.89-95, 1990.
DOI : 10.1002/polb.1990.090280107

A. Jonscher, The ???universal??? dielectric response, Nature, vol.11, issue.5613, p.673, 1977.
DOI : 10.1039/tf946420a056

D. Puglia, L. Valentini, I. Armentano, and J. Kenny, Effects of single-walled carbon nanotube incorporation on the cure reaction of epoxy resin and its detection by Raman spectroscopy, Diamond and Related Materials, vol.12, issue.3-7, pp.827-859, 2003.
DOI : 10.1016/S0925-9635(02)00358-8

M. Kamal and S. Sourour, Kinetics and thermal characterization of thermoset cure, Polymer Engineering and Science, vol.13, issue.1, pp.59-64, 1973.
DOI : 10.1002/pen.760130110

S. Sourour and M. Kamal, Differential scanning calorimetry of epoxy cure: isothermal cure kinetics, Thermochimica Acta, vol.14, issue.1-2, pp.41-59, 1976.
DOI : 10.1016/0040-6031(76)80056-1

N. Rabearison, C. Jochum, and J. Grandidier, A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy, Journal of Materials Science, vol.191, issue.51???52, pp.787-96, 2011.
DOI : 10.1007/s10853-010-4815-7

URL : https://hal.archives-ouvertes.fr/hal-00593684

E. Sawi, I. Olivier, P. Demont, P. Bougherara, and H. , Processing and electrical characterization of a unidirectional CFRP composite filled with double walled carbon nanotubes, Composites Science and Technology, vol.73, pp.19-26, 2012.
DOI : 10.1016/j.compscitech.2012.08.016

URL : https://hal.archives-ouvertes.fr/hal-00904040

P. Carreau, Rheological Equations from Molecular Network Theories, Transactions of the Society of Rheology, vol.16, issue.1, p.99, 1972.
DOI : 10.1122/1.549276

K. Yasuda, R. Armstrong, and R. Cohen, Shear flow properties of concentrated solutions of linear and star branched polystyrenes, Rheologica Acta, vol.28, issue.2, p.10, 1981.
DOI : 10.1007/BF01513059

P. Pötschke, T. Fornes, and D. Paul, Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer, vol.43, issue.11, pp.3247-55, 2002.
DOI : 10.1016/S0032-3861(02)00151-9

R. Kotsilkova, D. Nesheva, I. Nedkov, E. Krusteva, and S. Stavrev, Rheological, electrical, and microwave properties of polymers with nanosized carbon particles, Journal of Applied Polymer Science, vol.20, issue.4, pp.2220-2227, 2004.
DOI : 10.1002/app.20240

C. Mcclory, P. Pötschke, and T. Mcnally, Influence of Screw Speed on Electrical and Rheological Percolation of Melt-Mixed High-Impact Polystyrene/MWCNT Nanocomposites, Macromolecular Materials and Engineering, vol.44, issue.1, pp.59-69, 2011.
DOI : 10.1002/mame.201000220

J. Sumfleth, S. Buschhorn, and K. Schulte, Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers, Journal of Materials Science, vol.47, issue.3, pp.659-69, 2010.
DOI : 10.1007/s10853-010-4788-6

Y. Liu and A. Wilkinson, Processing behaviour of a nanocomposite matrix for multiscale composites, Proceedings of the 16th European conference on composite materials, 2014.

G. Stauffer, In: Introduction to percolation theory, 1985.

J. Li, P. Ma, W. Chow, C. To, B. Tang et al., Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes, Advanced Functional Materials, vol.72, issue.16, pp.3207-3222, 2007.
DOI : 10.1002/adfm.200700065

S. Barrau, P. Demont, E. Perez, A. Peigney, C. Laurent et al., Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes???Epoxy Resin Composites, Macromolecules, vol.36, issue.26, pp.9678-80, 2003.
DOI : 10.1021/ma030399m

URL : https://hal.archives-ouvertes.fr/hal-00920397

H. Barnes, J. Hutton, and K. Walters, In: An introduction to rheology, Amsterdam, 1989.