V. Beni and D. W. Arrigan, Microelectrode Arrays and Microfabricated Devices in Electrochemical Stripping Analysis, Current Analytical Chemistry, vol.4, issue.3, pp.229-241, 2008.
DOI : 10.2174/157341108784911406

O. A. Sadik, A. O. Aluoch, and A. Zhou, Status of biomolecular recognition using electrochemical techniques, Biosensors and Bioelectronics, vol.24, issue.9, pp.2749-2765, 2009.
DOI : 10.1016/j.bios.2008.10.003

J. W. Schultze and V. Tsakova, Electrochemical microsystem technologies: from fundamental research to technical systems, Electrochimica Acta, vol.44, issue.21-22, pp.3605-3627, 1999.
DOI : 10.1016/S0013-4686(99)00065-1

C. Amatore, S. Arbault, C. Bouton, K. Coffi, J. C. Drapier et al., Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical Depolarization, ChemBioChem, vol.11, issue.4, pp.653-661, 2006.
DOI : 10.1002/cbic.200500359

URL : https://hal.archives-ouvertes.fr/hal-00023221

A. Ruffien-ciszak, P. Gros, M. Comtat, A. M. Schmitt, E. Questel et al., Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry, Journal of Pharmaceutical and Biomedical Analysis, vol.40, issue.1, pp.162-167, 2006.
DOI : 10.1016/j.jpba.2005.05.035

J. G. Roberts, J. V. Toups, E. Eyualem, G. S. Mccarty, and L. A. Sombers, In Situ Electrode Calibration Strategy for Voltammetric Measurements In Vivo, Analytical Chemistry, vol.85, issue.23, pp.85-11568, 2013.
DOI : 10.1021/ac402884n

R. S. Pai, K. M. Walsh, M. M. Crain, T. J. Roussel, D. J. Jackson et al., Fully Integrated Three-Dimensional Electrodes for Electrochemical Detection in Microchips: Fabrication, Characterization, and Applications, Analytical Chemistry, vol.81, issue.12, pp.81-4762, 2009.
DOI : 10.1021/ac9002529

Y. P. Chen, Y. Zhao, J. Chu, S. Y. Liu, W. W. Li et al., Fabrication and characterization of an innovative integrated solid-state microelectrode, Electrochimica Acta, vol.55, issue.20, pp.5984-5989, 2010.
DOI : 10.1016/j.electacta.2010.05.053

K. Dawson, A. Wahl, S. Barry, C. Barrett, and N. Sassiat, Fully integrated on-chip nano-electrochemical devices for electroanalytical applications, Electrochimica Acta, vol.115, pp.239-246, 2014.
DOI : 10.1016/j.electacta.2013.10.144

N. Pereira-rodriguez, Y. Sakai, and T. Fujii, Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen, Sensors and Actuators B: Chemical, vol.132, issue.2, pp.608-613, 2008.
DOI : 10.1016/j.snb.2007.12.025

M. Miyashita, N. Ito, S. Ikeda, T. Murayama, K. Oguma et al., Development of urine glucose meter based on micro-planar amperometric biosensor and its clinical application for self-monitoring of urine glucose, Biosens. Bioelectron, pp.24-1336, 2009.

S. B. Amor, E. Vanhove, F. Sékli-belaïdi, S. Charlot, D. Colin et al., Enhanced Detection of Hydrogen Peroxide with Platinized Microelectrode Arrays for Analyses of Mitochondria Activities, Electrochimica Acta, vol.126, pp.171-178, 2014.
DOI : 10.1016/j.electacta.2013.11.104

URL : https://hal.archives-ouvertes.fr/hal-01504995

O. Frey, P. D. Van-der-wal, S. Spieth, O. Brett, K. Seidl et al., Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical detection, J. Neural Eng, vol.8, pp.1-9, 2011.

A. Altuna, L. Menendez-de-la-prida, E. Bellistri, G. Gabriel, A. Guilera et al., SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording, Biosensors and Bioelectronics, vol.37, issue.1, pp.37-38, 2012.
DOI : 10.1016/j.bios.2012.03.039

J. Dawson, P. Jeemon, L. Hetherington, C. Judd, C. Hastie et al., Serum Uric Acid Level, Longitudinal Blood Pressure, Renal Function, and Long-Term Mortality in Treated Hypertensive Patients, Hypertension, vol.62, issue.1, pp.105-111, 2013.
DOI : 10.1161/HYPERTENSIONAHA.113.00859

S. S. Rodriguez, K. A. Salazar, N. A. Jara, M. A. Garcia-robles, F. Perez et al., Retracted: Superoxide-dependent uptake of vitamin C in human glioma cells, Journal of Neurochemistry, vol.59, issue.6, pp.793-804, 2013.
DOI : 10.1111/jnc.12365

S. D. Cekic, A. Cetinkaya, A. N. Avan, and R. Apak, Correlation of total antioxidant capacity with reactive oxygen species (ROS) consumption measured by oxidative conversion, J. Agric. Food Chem, pp.61-5260, 2013.

O. Orrigoni and M. C. De-tullio, Ascorbic acid: much more than just an antioxidant, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1569, issue.1-3, pp.1-9, 2002.
DOI : 10.1016/S0304-4165(01)00235-5

R. M. Wightman, L. J. May, and A. C. Michael, Detection of Dopamine Dynamics in the Brain, Analytical Chemistry, vol.60, issue.13, pp.769-793, 1988.
DOI : 10.1021/ac00164a718

C. Martin, The Parkinson's puzzle: new developments in our understanding of Parkinson's disease have generated a number of promising new treatments for this disabling condition, Chem. Britain, vol.34, pp.40-42, 1998.

V. V. Eswara-dutt and H. A. Mottola, Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period, Anal. Chem, pp.46-1777, 1974.

H. Etnet and M. Knoll, Electrochemical characterization of uric acid and ascorbic acid at a platinum electrode, Anal. Chim. Acta, vol.449, pp.129-134, 2001.

C. Christophe, F. Sékli-belaïdi, J. Launay, P. Gros, E. Questel et al., Elaboration of integrated microelectrodes for the detection of antioxidant species, Sensors and Actuators B: Chemical, vol.177, pp.350-356, 2013.
DOI : 10.1016/j.snb.2012.11.032

URL : https://hal.archives-ouvertes.fr/hal-00783050

M. Roushani, M. Shamsipur, and H. R. Rajabi, Highly selective detection of dopamine in the presence of ascorbic acid and uric acid using thioglycolic acid capped CdTe quantum dots modified electrode, Journal of Electroanalytical Chemistry, vol.712, pp.712-731, 2014.
DOI : 10.1016/j.jelechem.2013.08.027

B. Kaur, T. Pandiyan, B. Satpati, and R. Srivastava, Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticules-decorated reduced graphene oxide modified electrode, Colloid Surf, pp.111-97, 2013.

X. Wang, M. Wu, W. Tang, Y. Zhu, L. Wang et al., Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode, Journal of Electroanalytical Chemistry, vol.695, pp.695-705, 2013.
DOI : 10.1016/j.jelechem.2013.02.021

T. Q. Xu, Q. L. Fhang, J. N. Zheng, Z. Y. Lv, J. Wei et al., Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide, Electrochimica Acta, vol.115, pp.109-115, 2014.
DOI : 10.1016/j.electacta.2013.10.147

E. De-pieri-troiani, E. R. Pereira-filho, and R. C. Faria, Chemometric Strategies to Develop a Nanocomposite Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid, Electroanalysis, vol.618, issue.8, pp.2822-2831, 2011.
DOI : 10.1002/elan.201300166

H. Li, Y. Wang, D. Ye, J. Luo, B. Su et al., An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite, Talanta, vol.127, pp.255-261, 2014.
DOI : 10.1016/j.talanta.2014.03.034

J. Zhan, Z. Zhu, J. Zhu, K. Li, and S. Hua, Selective determination of dopamine, ascorbic acid and uric acid at SDS-MWCNTs modified glassy carbon electrode, Int. J. Electrochem. Soc, vol.9, pp.1264-1272, 2014.

P. Manivel, M. Dhakshnamoorthy, A. Balamurugan, N. Ponpandian, D. Mangalaraj et al., Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid, RSC Advances, vol.34, issue.34, pp.14428-14437, 2013.
DOI : 10.1039/c3ra42322k

J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang et al., Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosensors and Bioelectronics, vol.53, pp.53-220, 2014.
DOI : 10.1016/j.bios.2013.09.064

D. Wu, Y. Li, Y. Zhang, P. Wang, Q. Wei et al., Sensitive Electrochemical Sensor for Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid Enhanced by Amino-group Functionalized Mesoporous Fe3O4@Graphene Sheets, Electrochimica Acta, vol.116, pp.244-249, 2014.
DOI : 10.1016/j.electacta.2013.11.033

Y. Li and X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode, Sensors and Actuators B: Chemical, vol.115, issue.1, pp.134-139, 2006.
DOI : 10.1016/j.snb.2005.08.022

M. Mazloum-ardakani, M. A. Sheikh-mohseni, and A. Benvidi, Electropolymerization of Thin Film Conducting Polymer and Its Application for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid, Electroanalysis, vol.10, issue.12, pp.2822-2831, 2011.
DOI : 10.1002/elan.201100289

J. Samseya, R. Srinivasan, Y. T. Chang, C. W. Tsao, and V. S. Vasantha, Fabrication and characterisation of high performance polypyrrole modified microarray sensor for ascorbic acid determination, Analytica Chimica Acta, vol.793, pp.11-18, 2013.
DOI : 10.1016/j.aca.2013.06.049

S. S. Kumar, J. Mathiyarasu, K. L. Phani, and V. Yegnaraman, Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode, Journal of Solid State Electrochemistry, vol.54, issue.11, pp.10-905, 2006.
DOI : 10.1007/s10008-005-0041-7

J. Mathiyarasu, S. Senthilkumar, K. L. Phani, and V. Yegnaraman, PEDOT-Au nanocomposite film for electrochemical sensing, Materials Letters, vol.62, issue.4-5, pp.571-573, 2008.
DOI : 10.1016/j.matlet.2007.06.004

F. Sekli-belaidi, P. Temple-boyer, and P. Gros, Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids, Journal of Electroanalytical Chemistry, vol.647, issue.2, pp.159-168, 2010.
DOI : 10.1016/j.jelechem.2010.06.007

K. C. Lin, C. Y. Yin, and S. M. Chen, Simultaneous determination of AA, DA, and UA based on bipolymers by electropolymerization of luminol and 3,4-ethylenedioxythiophene monomers, Int. J. Electrochem. Sci, vol.6, pp.3951-3965, 2011.

S. Yu, C. Luo, L. Wang, H. Peng, and Z. Zhu, Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid, The Analyst, vol.88, issue.4, pp.1149-1155, 2013.
DOI : 10.1039/c2an36335f

K. C. Lin, J. Y. Huang, and S. M. Chen, Simultaneous determination of ascorbic acid, dopamine, uric acid and hydrogen peroxide based on co-immobilization of PEDOT and FAD using multi-walled carbon nanotubes, Anal. Methods, vol.90, issue.20, pp.8321-8327, 2014.
DOI : 10.1039/C4AY01639D

L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4- ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater, pp.12-481, 2000.
DOI : 10.1002/(sici)1521-4095(200004)12:7<481::aid-adma481>3.3.co;2-3

R. Jolly, S. Pairis, and C. Petrescu, Comparative ageing of three electroconductive polymers, J. Chim. Phys, pp.95-1400, 1998.

K. Lerch, F. Jonas, and M. Linke, Properties and applications of Baytron (PEDT), Journal de Chimie Physique et de Physico-Chimie Biologique, vol.95, issue.6, pp.95-1506, 1998.
DOI : 10.1051/jcp:1998316

J. Roncali, A. Yassar, and F. Garnier, Electrosynthesis of highly conducting poly(3-methylthiophene) thin films, Journal of the Chemical Society, Chemical Communications, vol.9, issue.9, pp.581-582, 1988.
DOI : 10.1039/c39880000581

C. P. Andrieux, J. M. Dumas-bouchiat, and J. M. Savéant, Kinetics of electrochemical reactions mediated by redox polymer films, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.169, issue.1-2, pp.9-21, 1984.
DOI : 10.1016/0022-0728(84)80069-8

E. Vanhove, A. Tsopéla, L. Bouscayrol, A. Desmoulin, J. Launay et al., Final capping passivation layers for long-life microsensors in real fluids, Sensors and Actuators B: Chemical, vol.178, pp.350-358, 2013.
DOI : 10.1016/j.snb.2012.12.088

URL : https://hal.archives-ouvertes.fr/hal-01508078

V. Castagnola, C. Bayon, E. Descamps, and C. Bergaud, Morphology and conductivity of PEDOT layers produced by different electrochemical routes, Synth, pp.7-16, 2014.

]. E. Tamburri, S. Orlanducci, F. Toschi, M. L. Terranova, and D. Passeri, Growth mechanisms, morphology and electroactivity of PEDOT layers produced by different electrochemical routes in aqueous medium, Synth, pp.406-414, 2009.

J. Bobacka, A. Lewenstam, and A. Ivaska, Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions, Journal of Electroanalytical Chemistry, vol.489, issue.1-2, pp.489-506, 2000.
DOI : 10.1016/S0022-0728(00)00206-0

L. Pigani, B. Zanfrognini, and R. Seeber, PEDOT-Modified Microelectrodes. Preparation, Characterisation and Analytical Performances, Electroanalysis, vol.609, issue.6, pp.1340-1347, 2012.
DOI : 10.1002/elan.201200020

J. C. Gustafsson, B. Ledberg, and O. Inganäs, In situ spectroscopic investigations of electrochromism and ion transport in a poly (3,4-ethylenedioxythiophene) electrode in a solid state electrochemical cell, Solid State Ionics, vol.69, issue.2, pp.145-152, 1994.
DOI : 10.1016/0167-2738(94)90403-0

T. F. Otero, I. Cantero, and H. Grande, Solvent effects on the charge storage ability in polypyrrole, Electrochimica Acta, vol.44, issue.12, pp.2053-2059, 1999.
DOI : 10.1016/S0013-4686(98)00313-2

R. Kiefer, G. A. Bowmaker, R. P. Cooney, P. A. Kilmartin, and J. Travas-sejdic, Cation driven actuation for free standing PEDOT films prepared from propylene carbonate electrolytes containing TBACF3SO3, Electrochimica Acta, vol.53, issue.5, pp.2593-2599, 2008.
DOI : 10.1016/j.electacta.2007.10.033

H. J. Ahonen, J. Lukkari, T. Hellstrom, J. Mattila, and J. Kankare, Characterisation of poly(3,4-ethylenedioxythiophene) films polymerised in aqueous media, Synthetic Metals, vol.119, issue.1-3, pp.119-120, 2001.
DOI : 10.1016/S0379-6779(00)01101-2

S. Patra, K. Parai, and N. Munichandraiah, Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes, Synth, pp.430-435, 2008.

G. E. Poirier and M. J. Tarlov, Molecular ordering and gold migration observed in butanethiol self-assembled monolayers using scanning tunneling microscopy, The Journal of Physical Chemistry, vol.99, issue.27, pp.10966-10970, 1995.
DOI : 10.1021/j100027a042

Y. C. Yang, Y. P. Yen, L. Y. Yan, S. L. Yau, and K. Itaya, Elucidation of the Deposition Processes and Spatial Structures of Alkanethiol and Arylthiol Molecules Adsorbed on Pt(111) Electrodes with in Situ Scanning Tunneling Microscopy, Langmuir, vol.20, issue.23, pp.10030-10037, 2004.
DOI : 10.1021/la030198b

M. C. Polidori, W. Stahl, O. Eichler, I. Niestroj, and H. Sies, Profiles of antioxidants in human plasma, Free Radic, Biol. Med, vol.30, pp.456-462, 2001.

S. Biographies-fadhila and . Belaïdi-was-born-on, She received her Master's Degree in process and environmental engineering from the Institut National des Sciences Appliquées de Toulouse, She joined the " Laboratoire de Génie Chimique " (LGC) from the University of Toulouse (France) in 2007. She is working on the development of electrochemical microsensors for chemical and biochemical detection, 1980.

A. Civélas-was-born-in-aix-en-provence and F. , She joined the Laboratoire d'Analyse et d'Architecture des Systèmes " (LAAS) of the " Centre National de la Recherche Scientifique " (CNRS) of Toulouse in 2012 for a one year training course. She worked on the development of electrochemical microsensors for chemical and biochemical detection, She received the degree in electronic Engineering from the in " Chimie -Physique?Electronique " school, 1989.

V. Castagnola-was-born-in-bologna and . Italy-in, She received the master degree in photochemistry and material chemistry from the University of Bologna, in 2011. She joined the " Laboratoire d'Analyse et d'Architecture des Systèmes, Centre National de la Recherche Scientifique " (LAAS-CNRS), in 2011 as PhD Student. She is carrying out her experimental research concerning implantable microdevices for the recording of the neural activity, 1986.

A. Tsopela-was-born-in-athens and G. In, She received the master degree in chemical engineering from the National Technical University of Athens (NTUA - Greece), in 2011. She joined the " Laboratoire d'Analyse et d'Architecture des Systèmes, Centre National de la Recherche Scientifique " (LAAS-CNRS), in 2011 as PhD Student. She is carrying out her experimental research in the development of microsensors with environmental applications, 1988.

P. Gros-was-born, He graduated in physical chemistry in 1992 and received his PhD degree in Chemical Engineering in 1996 at the University Paul Sabatier in Toulouse. He is now Professor in Electroanalytical Engineering in the Chemical Engineering Laboratory He is currently working on the development of electrochemical (bio)sensors, 1970.

P. Temple-boyer, He received his Engineer's Degree in electronic engineering from the Ecole Supérieure d'Electricité " (Paris?France) in 1990 and his Master's Degree in microelectronics from the University of Toulouse (France) in 1992. He joined the " Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS) from the French " Centre National de la Recherche Scientifique " (CNRS) in 1992 and received the PhD degree from the " Institut National des Sciences Appliquées de Toulouse, 1966.