La première preuve d'optimalité pour le cluster de Lennard-Jones à cinq atomes

Résumé : Le potentiel de Lennard-Jones est un modèle relativement réaliste décrivant les interactions entre deux atomes au sein d'un gaz rare. Déterminer la configuration la plus stable d'un cluster à N atomes revient à trouver les positions relatives des atomes qui minimisent l'énergie potentielle globale ; ce potentiel joue un rôle important dans le cadre des agrégats atomiques et les nanotechnologies. Le problème de cluster est NP-difficile et ouvert pour N > 4, et n'a jamais été résolu par des méthodes globales fiables. Nous proposons de résoudre le problème de cluster à cinq atomes de manière optimale avec des méthodes d'intervalles qui garantissent un encadrement du minimum global, même en présence d'arrondis. Notre modèle spatial permet d'éliminer certaines symétries du problème et de calculer des minorants plus précis dans le branch and bound par intervalles. Nous montrons que la meilleure solution connue du problème à cinq atomes est optimale, fournissons la configuration spatiale correspondante et comparons notre solveur fiable aux solveurs BARON et Couenne. Alors que notre solution est numériquement certifiée avec une précision de 10 −9 , les solutions de BARON et Couenne sont entachées d'erreurs numériques.
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01168111
Contributor : Charlie Vanaret <>
Submitted on : Thursday, June 25, 2015 - 11:56:53 AM
Last modification on : Tuesday, May 21, 2019 - 1:35:07 PM
Long-term archiving on : Friday, October 9, 2015 - 5:27:49 PM

File

Vanaret.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01168111, version 1

Collections

Citation

Charlie Vanaret, Jean-Baptiste Gotteland, Nicolas Durand, Jean-Marc Alliot. La première preuve d'optimalité pour le cluster de Lennard-Jones à cinq atomes. Onzièmes Journées Francophones de Programmation par Contraintes (JFPC 2015), Jun 2015, Bordeaux, France. ⟨hal-01168111⟩

Share

Metrics

Record views

299

Files downloads

175