M. Connor, S. Roy, T. Ezquerra, and F. , Broadband ac conductivity of conductor-polymer composites, Physical Review B, vol.57, issue.4, pp.2286-2294, 1998.
DOI : 10.1103/PhysRevB.57.2286

J. Li, P. C. Ma, W. S. Chow, C. K. To, B. Z. Tang et al., Correlations between Percolation Threshold, Dispersion State, and Aspect Ratio of Carbon Nanotubes, Advanced Functional Materials, vol.72, issue.16, pp.3207-3215, 2007.
DOI : 10.1002/adfm.200700065

V. G. Shevchenko, S. V. Polschikov, P. M. Nedorezova, A. N. Klyamkina, A. N. Shchegolikhin et al., In situ polymerized poly(propylene)/graphene nanoplatelets nanocomposites: Dielectric and microwave properties, Polymer, vol.53, issue.23, pp.53-2012
DOI : 10.1016/j.polymer.2012.09.018

A. No?-el, J. Faucheu, J. Chenal, J. Viricelle, and E. Bourgeat-lami, Electrical and mechanical percolation in graphene-latex nanocomposites, Polymer, vol.55, issue.20, pp.5140-5145, 2014.
DOI : 10.1016/j.polymer.2014.08.025

K. H. Liao, Y. Qian, and C. W. Macosko, Ultralow percolation graphene/polyurethane acrylate nanocomposites, Polymer, vol.53, issue.17, pp.3756-3761, 2012.
DOI : 10.1016/j.polymer.2012.06.020

S. Barrau, P. Demont, A. Peigney, C. Laurent, and C. Lacabanne, DC and AC Conductivity of Carbon Nanotubes???Polyepoxy Composites, Macromolecules, vol.36, issue.14, pp.5187-5194, 2003.
DOI : 10.1021/ma021263b

URL : https://hal.archives-ouvertes.fr/hal-00920407

L. Q. Cortes, A. Lonjon, E. Dantras, and C. Lacabanne, High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties, Journal of Non-Crystalline Solids, vol.391, 2014.
DOI : 10.1016/j.jnoncrysol.2014.03.016

URL : https://hal.archives-ouvertes.fr/hal-00976576

D. Untereker, S. Lyu, J. Schley, G. Martinez, and L. Lohstreter, Maximum Conductivity of Packed Nanoparticles and Their Polymer Composites, ACS Applied Materials & Interfaces, vol.1, issue.1, 2009.
DOI : 10.1021/am800038z

A. Lonjon, L. Laffont, P. Demont, E. Dantras, and C. Lacabanne, Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites, Journal of Physics D: Applied Physics, vol.43, issue.34, p.43, 2010.
DOI : 10.1088/0022-3727/43/34/345401

URL : https://hal.archives-ouvertes.fr/hal-00569688

A. Lonjon, L. Laffont, P. Demont, E. Dantras, and C. Lacabanne, New Highly Conductive Nickel Nanowire-Filled P(VDF-TrFE) Copolymer Nanocomposites: Elaboration and Structural Study, The Journal of Physical Chemistry C, vol.113, issue.28, pp.12002-12006, 2009.
DOI : 10.1021/jp901563w

S. Wang, Y. Cheng, R. Wang, J. Sun, L. B. Gao et al., Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials, ACS Applied Materials & Interfaces, vol.6, issue.9, pp.52-57, 2014.
DOI : 10.1021/am500009p

V. Bocharova, A. Kiriy, U. Oertel, M. Stamm, F. Stoffelbach et al., Ultrathin Transparent Conductive Films of Polymer-Modified Multiwalled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.110, issue.30, pp.14640-14644, 2006.
DOI : 10.1021/jp062458e

J. Li, J. Liang, X. Jian, W. Hu, J. Li et al., A Flexible and Transparent Thin Film Heater Based on a Silver Nanowire/Heat-resistant Polymer Composite, Macromolecular Materials and Engineering, vol.63, issue.11, p.299, 2014.
DOI : 10.1002/mame.201400097

Y. Song, C. Yang, D. Y. Kim, H. Kanoh, and K. Kaneko, Flexible transparent conducting single-wall carbon nanotube film with network bridging method, Journal of Colloid and Interface Science, vol.318, issue.2, pp.318-365, 2008.
DOI : 10.1016/j.jcis.2007.10.051

X. He, R. He, A. Liu, X. Chen, Z. Zhao et al., A highly conductive, flexible, transparent composite electrode based on the lamination of silver nanowires and polyvinyl alcohol, J. Mater. Chem. C, vol.2, issue.45, pp.9737-9745, 2014.
DOI : 10.1039/C4TC01484G

J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Graphene-based polymer nanocomposites, pp.5-25, 2011.
DOI : 10.1016/j.polymer.2010.11.042

C. Wu, X. Huang, G. Wang, L. Lv, G. Chen et al., Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process, Adv. Funct. Mater, vol.23, 2013.

X. Peng, F. Tan, W. Wang, X. Qiu, F. Sun et al., Conductivity improvement of silver flakes filled electrical conductive adhesives via introducing silver???graphene nanocomposites, Journal of Materials Science: Materials in Electronics, vol.134, issue.3, pp.1149-1155, 2014.
DOI : 10.1007/s10854-013-1671-7

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and . Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, The Journal of Chemical Physics, vol.116, issue.15, p.6755, 2002.
DOI : 10.1063/1.1462610

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, ChemInform, vol.107, issue.16, pp.668-677, 2003.
DOI : 10.1002/chin.200316243

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran et al., Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications, Chemical Reviews, vol.111, issue.6, pp.111-3669, 2011.
DOI : 10.1021/cr100275d

J. Zeng, S. Roberts, and Y. Xia, Nanocrystal-based time-temperature indicators, Chem. -A Eur, J, vol.16, pp.12559-12563, 2010.

I. Vukoje, V. Lazi-c, V. Vodnik, M. Mitri-c, B. Joki-c et al., The influence of triangular silver nanoplates on antimicrobial activity and color of cotton fabrics pretreated with chitosan, Journal of Materials Science, vol.54, issue.13, pp.49-4453, 2014.
DOI : 10.1007/s10853-014-8142-2

M. Rai, A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnology Advances, vol.27, issue.1, pp.76-83, 2009.
DOI : 10.1016/j.biotechadv.2008.09.002

R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz et al., Photoinduced Conversion of Silver Nanospheres to Nanoprisms, Science, vol.294, issue.5548, 2001.
DOI : 10.1126/science.1066541

N. Li, Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan et al., H2O2-Aided Seed-Mediated Synthesis of Silver Nanoplates with Improved Yield and Efficiency, ChemPhysChem, vol.50, issue.10, pp.2526-2530, 2012.
DOI : 10.1002/cphc.201101018

Q. Zhang, Y. Hu, S. Guo, J. Goebl, and Y. Yin, Seeded Growth of Uniform Ag Nanoplates with High Aspect Ratio and Widely Tunable Surface Plasmon Bands, Nano Letters, vol.10, issue.12, pp.5037-5042, 2010.
DOI : 10.1021/nl1032233

J. Zeng, X. Xia, M. Rycenga, P. Henneghan, Q. Li et al., Successive deposition of silver on silver nanoplates: lateral versus vertical growth, Angew. Chem. Int. Ed. Engl, pp.50-244, 2011.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang et al., A Mechanistic Study on the Formation of Silver Nanoplates in the Presence of Silver Seeds and Citric Acid or Citrate Ions, Chemistry - An Asian Journal, vol.11, issue.2, pp.376-379, 2011.
DOI : 10.1002/asia.201000728

A. Le-beulze, E. Duguet, S. Mornet, J. Majimel, M. Tr-eguer-delapierre et al., Nanoprisms, Langmuir, vol.30, issue.5, pp.1424-1434, 2014.
DOI : 10.1021/la4039705

URL : https://hal.archives-ouvertes.fr/hal-00955407

J. Song, Y. Chu, Y. Liu, L. Li, and W. Sun, Room-temperature controllable fabrication of silver nanoplates reduced by aniline, Chemical Communications, vol.22, issue.10, pp.1223-1225, 2008.
DOI : 10.1039/b715884j

H. Murayama, N. Hashimoto, and H. Tanaka, Ag triangular nanoplates synthesized by photo-induced reduction: Structure analysis and stability, Chemical Physics Letters, vol.482, issue.4-6, pp.482-291, 2009.
DOI : 10.1016/j.cplett.2009.10.015

X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao, One-step growth of triangular silver nanoplates with predictable sizes on a large scale, Nanoscale, vol.29, issue.9, pp.4513-4516, 2014.
DOI : 10.1039/c4nr00254g

G. S. Etraux and C. Mirkin, Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness, Advanced Materials, vol.107, issue.4, pp.412-415, 2005.
DOI : 10.1002/adma.200401086

B. Tang, S. Xu, X. Hou, J. Li, L. Sun et al., Shape Evolution of Silver Nanoplates through Heating and Photoinduction, ACS Applied Materials & Interfaces, vol.5, issue.3, pp.646-653, 2013.
DOI : 10.1021/am302072u

I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates, Advanced Materials, vol.15, issue.13, pp.1745-1749, 2006.
DOI : 10.1002/adma.200600675

X. Xia, J. Zeng, Q. Zhang, C. H. Moran, and Y. Xia, Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals, The Journal of Physical Chemistry C, vol.116, issue.41, pp.21647-21656, 2012.
DOI : 10.1021/jp306063p

Q. Zhang, N. Li, J. Goebl, Z. Lu, and Y. Yin, A systematic study of the synthesis of silver nanoplates: is citrate a " magic " reagent? Synthesis and growth mechanism of triangular Ag-rich AgAu alloy prisms in an aqueous solution in the presence of PVP, J. Am. Chem. Soc. CrystEngComm, vol.133, issue.15, p.7688, 2011.

X. Zou, E. Ying, H. Chen, and S. Dong, An approach for synthesizing nanometer- to micrometer-sized silver nanoplates, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.303, issue.3, pp.303-226, 2007.
DOI : 10.1016/j.colsurfa.2007.04.009

D. M. Ledwith, A. M. Whelan, and J. M. Kelly, A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles, Journal of Materials Chemistry, vol.73, issue.23, pp.17-2459, 2007.
DOI : 10.1039/b702141k

Z. Yi, J. Zhang, H. He, X. Xu, B. Luo et al., Convenient synthesis of silver nanoplates with adjustable size through seed mediated growth approach, Transactions of Nonferrous Metals Society of China, vol.22, issue.4, pp.865-872, 2012.
DOI : 10.1016/S1003-6326(11)61258-2

Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?, Angewandte Chemie International Edition, vol.130, issue.295, p.48, 2009.
DOI : 10.1002/anie.200802248

W. A. Maryniak, T. Uehara, and M. A. Noras, Surface Resistivity and Surface Resistance Measurements Using a Concentric Ring Probe Technique, Trek Inc, pp.798-801, 2003.

Q. Lu, K. Lee, K. Lee, H. Kim, J. Lee et al., Investigation of shape controlled silver nanoplates by a solvothermal process, Journal of Colloid and Interface Science, vol.342, issue.1, pp.8-17, 2010.
DOI : 10.1016/j.jcis.2009.09.066

J. E. Millstone, S. J. Hurst, G. S. Etraux, and J. I. Cutler, Colloidal Gold and Silver Triangular Nanoprisms, Small, vol.19, issue.6, pp.646-664, 2009.
DOI : 10.1002/smll.200801480

R. Jin, Y. C. Cao, E. Hao, G. S. Etraux, G. C. Schatz et al., Controlling anisotropic nanoparticle growth through plasmon excitation, Nature, vol.425, issue.6957, pp.487-490, 2003.
DOI : 10.1038/nature02020

A. Lonjon, P. Demont, E. Dantras, and C. Lacabanne, Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes, Journal of Non-Crystalline Solids, vol.358, issue.15, pp.1859-1862, 2012.
DOI : 10.1016/j.jnoncrysol.2012.05.038

URL : https://hal.archives-ouvertes.fr/hal-00837753

D. Stauffer, Introduction to Percolation Theory, 1985.

D. Carponcin, E. Dantras, G. Aridon, F. Levallois, L. Cadiergues et al., Evolution of dispersion of carbon nanotubes in Polyamide 11 matrix composites as determined by DC conductivity, Composites Science and Technology, vol.72, issue.4, pp.72-515, 2012.
DOI : 10.1016/j.compscitech.2011.12.012

J. K. Sandler, J. E. Kirk, I. Kinloch, and M. S. Shaffer, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, Polymer, vol.44, issue.19, pp.5893-5899, 2003.
DOI : 10.1016/S0032-3861(03)00539-1

I. Balberg, C. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation, Physical Review B, vol.30, issue.7, 1984.
DOI : 10.1103/PhysRevB.30.3933

D. Frenkel and I. Lecture, Invited Lecture. Columnar ordering as an excluded-volume effect, Liquid Crystals, vol.5, issue.3, pp.929-940, 1989.
DOI : 10.1135/cccc19862301

M. Mathew, T. Schilling, and M. Oettel, Connectivity percolation in suspensions of hard platelets, Physical Review E, vol.85, issue.6, p.61407, 2012.
DOI : 10.1103/PhysRevE.85.061407

V. Favier, R. Dendievel, G. Canova, J. Y. Cavaille, and P. Gilormini, Simulation and modeling of three-dimensional percolating structures: Case of a latex matrix reinforced by a network of cellulose fibers, Acta Materialia, vol.45, issue.4, pp.45-1557, 1997.
DOI : 10.1016/S1359-6454(96)00264-9

J. P. Clerc, G. Giraud, S. Alexander, and E. Guyon, Conductivity of a mixture of conducting and insulating grains: Dimensionality effects, Physical Review B, vol.22, issue.5, pp.2489-2494, 1980.
DOI : 10.1103/PhysRevB.22.2489