S. Kirkpatrick, Percolation and Conduction, Reviews of Modern Physics, vol.45, issue.4, 1973.
DOI : 10.1103/RevModPhys.45.574

F. Lux, Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials, Journal of Materials Science, vol.52, issue.2, 1993.
DOI : 10.1007/BF00357799

C. W. Nan, Physics of inhomogeneous inorganic materials, Progress in Materials Science, vol.37, issue.1, pp.79-642590004, 1993.
DOI : 10.1016/0079-6425(93)90004-5

Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, European Polymer Journal, vol.38, issue.9, pp.14-305700064, 2002.
DOI : 10.1016/S0014-3057(02)00064-2

G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A: Applied Science and Manufacturing, vol.37, issue.5, 2006.
DOI : 10.1016/j.compositesa.2005.07.006

F. H. Gojny, M. H. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer et al., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, vol.47, issue.6, 2006.
DOI : 10.1016/j.polymer.2006.01.029

Z. Han and A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Progress in Polymer Science, vol.36, issue.7, 2011.
DOI : 10.1016/j.progpolymsci.2010.11.004

P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, Thermal properties and percolation in carbon nanotube-polymer composites, Applied Physics Letters, vol.91, issue.20, 2007.
DOI : 10.1063/1.2813625

URL : https://hal.archives-ouvertes.fr/hal-00390635

R. Haggenmueller, C. Guthy, J. R. Lukes, J. E. Fischer, and K. I. Winey, Single Wall Carbon Nanotube/Polyethylene Nanocomposites: Thermal and Electrical Conductivity, Macromolecules, vol.40, issue.7, 2007.
DOI : 10.1021/ma0615046

Y. P. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau et al., Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites, Composites Science and Technology, vol.68, issue.9, 2008.
DOI : 10.1016/j.compscitech.2007.11.014

K. Razeeb and E. Dalton, Nanowire-polymer nanocomposites as thermal interface material, Adv. Nanocomposites -Synth Tech, pp.685-706, 2011.

B. Weidenfeller, M. H?-ofer, and F. R. Schilling, Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene, Composites Part A: Applied Science and Manufacturing, vol.35, issue.4, 2004.
DOI : 10.1016/j.compositesa.2003.11.005

A. Lonjon, I. Caffrey, D. Carponcin, E. Dantras, and C. Lacabanne, High electrically conductive composites of Polyamide 11 filled with silver nanowires: Nanocomposites processing, mechanical and electrical analysis, Journal of Non-Crystalline Solids, vol.376, 2013.
DOI : 10.1016/j.jnoncrysol.2013.05.020

URL : https://hal.archives-ouvertes.fr/hal-00843561

A. Lonjon, P. Demont, E. Dantras, and C. Lacabanne, Low filled conductive P(VDF-TrFE) composites: Influence of silver particles aspect ratio on percolation threshold from spheres to nanowires, Journal of Non-Crystalline Solids, vol.358, issue.23, 2012.
DOI : 10.1016/j.jnoncrysol.2012.09.006

URL : https://hal.archives-ouvertes.fr/hal-00864886

L. Q. Cortes, A. Lonjon, E. Dantras, and C. Lacabanne, High-performance thermoplastic composites poly(ether ketone ketone)/silver nanowires: Morphological, mechanical and electrical properties, Journal of Non-Crystalline Solids, vol.391, issue.106, 2014.
DOI : 10.1016/j.jnoncrysol.2014.03.016

URL : https://hal.archives-ouvertes.fr/hal-00976576

S. Torquato, Thermal conductivity of disordered heterogeneous media from Fig. 5. Evolution of the composite thermal conductivity with temperature AgNP volume content: 0% (-), 1.3% (C), 7% (A), 8.4% (=), 11% ( ? ), pp.5-8

D. M. Bigg, Thermal conductivity of heterophase polymer compositions, Adv. Polym. Sci, vol.119, issue.1, 1995.
DOI : 10.1007/BFb0021279

C. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, Journal of Applied Physics, vol.81, issue.10, 1997.
DOI : 10.1063/1.365209

M. Foygel, R. Morris, D. Anez, S. French, and V. Sobolev, Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity, Physical Review B, vol.71, issue.10, 2005.
DOI : 10.1103/PhysRevB.71.104201

S. Kumar, M. A. Alam, and J. Y. Murthy, Effect of percolation on thermal transport in nanotube composites, Applied Physics Letters, vol.90, issue.10, 2007.
DOI : 10.1063/1.2712428

S. Y. Kwon, I. M. Kwon, Y. G. Kim, S. Lee, and Y. S. Seo, A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena, Carbon, vol.55, issue.285, 2013.
DOI : 10.1016/j.carbon.2012.12.063

J. Koo, Y. Kang, and C. Kleinstreuer, A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions, Nanotechnology, vol.19, issue.37, pp.957-4484, 2008.
DOI : 10.1088/0957-4484/19/37/375705

N. Shenogina, S. Shenogin, L. Xue, and P. Keblinski, On the lack of thermal percolation in carbon nanotube composites, Applied Physics Letters, vol.87, issue.13, 2005.
DOI : 10.1063/1.2056591

S. U. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, vol.79, issue.14, 2001.
DOI : 10.1063/1.1408272

A. Boudenne, Etude exp erimentale et th eorique des propri et es thermophysiques de mat eriaux composites a matrice polym ere, 2003.

A. Boudenne, L. Ibos, M. Fois, J. C. Majest-e, and E. Ehin, Electrical and thermal behavior of polypropylene filled with copper particles, Composites Part A: Applied Science and Manufacturing, vol.36, issue.11, 2005.
DOI : 10.1016/j.compositesa.2005.02.005

M. Y. Razzaq, M. Anhalt, L. Frormann, and B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers, Materials Science and Engineering: A, vol.444, issue.1-2, 2007.
DOI : 10.1016/j.msea.2006.08.083

B. Weidenfeller, M. H?-ofer, and F. Schilling, Thermal and electrical properties of magnetite filled polymers, Composites Part A: Applied Science and Manufacturing, vol.33, issue.8, pp.1359-835, 2002.
DOI : 10.1016/S1359-835X(02)00085-4

J. C. Seferis, Polyetheretherketone (PEEK): Processing-structure and properties studies for a matrix in high performance composites, Polymer Composites, vol.21, issue.3, 1986.
DOI : 10.1002/pc.750070305

N. A. Pratten, Review the precise measurement of the density of small samples, J. Mater Sci, vol.16, issue.1737, 1981.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2003.

M. Reading, A. Luget, and R. Wilson, Modulated differential scanning calorimetry, Thermochimica Acta, vol.238, issue.29594, pp.40-603185215, 1994.
DOI : 10.1016/S0040-6031(94)85215-4

]. A. Boller, Y. Jin, and B. Wunderlich, Heat capacity measurement by modulated DSC at constant temperature, Journal of Thermal Analysis, vol.87, issue.2-3, 1994.
DOI : 10.1007/BF02548519

L. C. Thomas, Measurement of Accurate Heat Capacity Values, pp.1-11, 2005.

S. M. Marcus and R. L. Blaine, Thermal conductivity of polymers, glasses and ceramics by modulated DSC, Thermochimica Acta, vol.243, issue.2, pp.40-603185058, 1994.
DOI : 10.1016/0040-6031(94)85058-5

R. L. Blaine and S. M. Marcus, Derivation of temperature-modulated DSC thermal conductivity equations, J. Therm. Anal. Calorim, vol.54, issue.467, 1998.

U. Gaur and B. Wunderlich, Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. V. Polystyrene, Journal of Physical and Chemical Reference Data, vol.11, issue.2, 1982.
DOI : 10.1063/1.555663

H. F. Mark, Encyclopedia of Polymer Science and Technology, 2003.

A. I. Medalia, Electrical Conduction in Carbon Black Composites, Rubber Chemistry and Technology, vol.59, issue.3, 1986.
DOI : 10.5254/1.3538209

S. Z. Cheng, S. Lim, L. H. Judovits, and B. Wunderlich, Heat capacities of high melting polymers containing phenylene groups, Polymer, vol.28, issue.1, pp.32-386190313, 1987.
DOI : 10.1016/0032-3861(87)90313-2

A. I. Chumakov, G. Monaco, A. Fontana, A. Bosak, R. P. Hermann et al., Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses, Physical Review Letters, vol.112, issue.2, p.25502, 2014.
DOI : 10.1103/PhysRevLett.112.025502

B. Budiansky, Thermal and Thermoelastic Properties of Isotropic Composites, Journal of Composite Materials, vol.2, issue.3, 1970.
DOI : 10.1177/002199837000400301

B. Agoudjil, A. Boudenne, I. Krupa, L. Ibos, and J. Majeste, Propri et es thermophysiques de composites polym ere/charges isolantes m etallis ees, Congr es Français Therm, SFT, vol.3, 2007.

B. Wunderlich, The heat capacity of polymers, Thermochimica Acta, vol.300, issue.1-2, pp.40-603103126, 1997.
DOI : 10.1016/S0040-6031(96)03126-7

C. L. Choy, K. W. Kwok, W. P. Leung, and F. P. Lau, Thermal conductivity of poly(ether ether ketone) and its short-fiber composites, Journal of Polymer Science Part B: Polymer Physics, vol.32, issue.8, 1994.
DOI : 10.1002/polb.1994.090320810

J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, A new structural model of effective thermal conductivity for heterogeneous materials with cocontinuous phases, Int. J. Heat. Mass Transf, vol.51, 2008.

X. Huang, P. Jiang, and L. Xie, Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity, Applied Physics Letters, vol.95, issue.24, 2009.
DOI : 10.1063/1.3273368

C. L. Choy, Thermal conductivity of polymers, Polymer, vol.18, issue.10, pp.32-386190002, 1977.
DOI : 10.1016/0032-3861(77)90002-7

R. C. Zeller and R. O. , Thermal Conductivity and Specific Heat of Noncrystalline Solids, Physical Review B, vol.4, issue.6, 1971.
DOI : 10.1103/PhysRevB.4.2029