R. A. Clark, A. G. Ewing, and A. G. , Quantitative measurement of released amines from individual exocytotic events, Molecular Neurobiology, pp.15-16, 1997.

R. M. Wightman, Probing Cellular Chemistry in Biological Systems with Microelectrodes, Science, vol.311, issue.5767, pp.311-1570, 2006.
DOI : 10.1126/science.1120027

C. Amatore, S. Arbault, M. Guille, and F. Lemaitre, Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress, Chemical Reviews, vol.108, issue.7, pp.2585-2621, 2008.
DOI : 10.1021/cr068062g

A. G. Ewing, J. C. Bigelow, and R. M. Wightman, Direct in vivo monitoring of dopamine released from two striatal compartments in the rat, Science, vol.221, issue.4606, pp.221-169, 1983.
DOI : 10.1126/science.6857277

A. Lad and Y. K. , Nanodevices for Monitoring Toxicological Behavior of Therapeutic Agent, Journal of Bionanoscience, vol.6, issue.1, pp.217-227, 2012.
DOI : 10.1166/rnn.2012.1016

M. Mazloum-ardakani, L. Hosseinzadeh, and A. Khoshroo, Label-free electrochemical immunosensor for detection of tumor necrosis factor ?? based on fullerene-functionalized carbon nanotubes/ionic liquid, Journal of Electroanalytical Chemistry, vol.757, pp.757-58, 2015.
DOI : 10.1016/j.jelechem.2015.09.006

P. Duangkaew, S. Tapaneeyakorn, C. Apiwat, T. Dharakul, S. Laiwejpithaya et al., Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16 INK4a cervical cancer detection in clinical samples, Biosensors and Bioelectronics, vol.74, pp.74-673, 2015.
DOI : 10.1016/j.bios.2015.07.004

J. M. Finnegan, K. Pihel, P. S. Cahill, L. Huang, S. E. Zerby et al., Vesicular Quantal Size Measured by Amperometry at Chromaffin, Mast, Pheochromocytoma, and Pancreatic ??-Cells, Journal of Neurochemistry, vol.66, issue.5, pp.66-1914, 1996.
DOI : 10.1046/j.1471-4159.1996.66051914.x

S. E. Hochstetler, M. Puopolo, S. Gustincich, E. Raviola, and R. M. Wightman, Real-Time Amperometric Measurements of Zeptomole Quantities of Dopamine Released from Neurons, Analytical Chemistry, vol.72, issue.3, pp.72-489, 2000.
DOI : 10.1021/ac991119x

C. Amatore, S. Arbault, and A. C. Koh, Simultaneous Detection of Reactive Oxygen and Nitrogen Species Released by a Single Macrophage by Triple Potential-Step Chronoamperometry, Analytical Chemistry, vol.82, issue.4, pp.82-1411, 2010.
DOI : 10.1021/ac902486x

X. Liu, S. Barizuddin, W. Shin, C. J. Mathai, S. Gangopadhyay et al., Microwell Device for Targeting Single Cells to Electrochemical Microelectrodes for High-Throughput Amperometric Detection of Quantal Exocytosis, Analytical Chemistry, vol.83, issue.7, pp.83-2445, 2011.
DOI : 10.1021/ac1033616

Y. S. Song and S. Bai, Characterization of a single cell of Chlorella in a microfluidic channel using amperometric electrode arrays, Biotechnology Letters, vol.12, issue.11, pp.36-2185, 2014.
DOI : 10.1007/s10529-014-1594-2

J. J. Day, M. F. Roitman, R. M. Wightman, and R. M. Carelli, Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens, Nature Neuroscience, vol.79, issue.8, pp.10-1020, 2007.
DOI : 10.1126/science.294.5544.1024

B. Zhang, K. L. Adams, S. J. Luber, D. J. Eves, M. L. Heien et al., Spatially and Temporally Resolved Single-Cell Exocytosis Utilizing Individually Addressable Carbon Microelectrode Arrays, Analytical Chemistry, vol.80, issue.5, pp.80-1394, 2008.
DOI : 10.1021/ac702409s

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653425

A. R. Smith, P. A. Garris, and J. M. Castro, Real-time monitoring of electrically evoked catecholamine signals in the songbird striatum using in vivo fast-scan cyclic voltammetry, Journal of Chemical Neuroanatomy, vol.66, issue.67, pp.66-67, 2015.
DOI : 10.1016/j.jchemneu.2015.04.002

. Wightman, Secretion of catecholamines from individual adrenal medullary chromaffin cells, Journal of Neurochemistry, vol.56, pp.1855-1863, 1991.

N. V. Kulagina, L. Shankar, and A. C. Michael, Monitoring Glutamate and Ascorbate in the Extracellular Space of Brain Tissue with Electrochemical Microsensors, Analytical Chemistry, vol.71, issue.22, pp.71-5093, 1999.
DOI : 10.1021/ac990636c

H. G. Sudibya, J. M. Ma, X. C. Dong, S. Ng, L. J. Li et al., Interfacing glycosylated carbon nanotube network devices with living cells to detect dynamic secretion of biomolecules, Angewandte Chemie, pp.48-2723, 2009.

S. Y. Yang, B. N. Kim, A. A. Zakhidov, P. G. Taylor, J. K. Lee et al., Detection of Transmitter Release from Single Living Cells Using Conducting Polymer Microelectrodes, Advanced Materials, vol.2, issue.24, pp.23-184, 2011.
DOI : 10.1002/adma.201100035

B. X. Shi, Y. Wang, K. Zhang, T. L. Lam, and H. L. Chan, Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes, Biosensors and Bioelectronics, vol.26, issue.6, pp.26-2917, 2011.
DOI : 10.1016/j.bios.2010.11.037

Y. Date, S. Takano, H. Shiku, K. Ino, T. Ito-sazaki et al., Monitoring oxygen consumption of single mouse embryos using an integrated electrochemical microdevice, Biosensors and Bioelectronics, vol.30, issue.1, pp.30-100, 2011.
DOI : 10.1016/j.bios.2011.08.037

C. Amatore, J. Delacotte, M. Guille-collignon, and F. Lemaître, Vesicular exocytosis and microdevices ??? microelectrode arrays, The Analyst, vol.26, issue.11, pp.140-3687, 2015.
DOI : 10.1039/C4AN01932F

URL : https://hal.archives-ouvertes.fr/hal-01154578

. Bedioui, On-chip multi-electrochemical sensor array platform for simultaneous screening of nitric oxide and peroxynitrite, Lab on Chip, vol.11, pp.1342-1350, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00662648

Y. Temiz, A. Ferretti, Y. Leblecici, and C. Guiducci, A comparative study on fabrication techniques for on-chip microelectrodes, Lab on a Chip, vol.21, issue.22, pp.12-4920, 2012.
DOI : 10.1039/c2lc40582b

C. Christophe, F. Sékli-belaidi, J. Launay, P. Gros, E. Questel et al., Elaboration of integrated microelectrodes for the detection of antioxidant species, Sensors and Actuators B: Chemical, vol.177, pp.177-350, 2013.
DOI : 10.1016/j.snb.2012.11.032

URL : https://hal.archives-ouvertes.fr/hal-00783050

S. B. Amor, E. Vanhove, F. Sékli-belaïdi, S. Charlot, D. Colin et al., Enhanced detection of hydrogen peroxide with platinized microelectrode arrays for analyses of mitochondria activities, Electrochimica Acta, pp.126-171, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01504995

A. Weltin, K. Slotvinski, J. Kieninger, I. Moser, G. Jobst et al., Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem, Lab Chip, vol.369, issue.4, pp.14-138, 2014.
DOI : 10.1039/C3LC50759A

P. Sun, F. O. Laforge, T. P. Abeyweera, S. A. Rotenberg, J. Carpino et al., Nanoelectrochemistry of mammalian cells, Proceedings of the National Academy of Science of the USA, pp.443-448, 2008.
DOI : 10.1073/pnas.96.25.14222

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206555

C. Lemaitre and . Amatore, Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages, Proceedings of the National Academy of Science of the USA, pp.11534-11539, 2012.

Z. P. Aguilar, W. R. Vandaveer, and I. Fritsch, Self-Contained Microelectrochemical Immunoassay for Small Volumes Using Mouse IgG as a Model System, Analytical Chemistry, vol.74, issue.14, pp.74-3321, 2002.
DOI : 10.1021/ac0110348

C. Ma, N. M. Contento, L. R. Gibson, and P. W. Bohn, Redox Cycling in Nanoscale-Recessed Ring-Disk Electrode Arrays for Enhanced Electrochemical Sensitivity, ACS Nano, vol.7, issue.6, pp.5483-5490, 2013.
DOI : 10.1021/nn401542x

L. Li, T. Abe, and M. Esashi, Smooth surface glass etching by deep reactive ion etching with SF[sub 6] and Xe gases, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.21, issue.6, pp.2545-2549, 2003.
DOI : 10.1116/1.1624272

J. H. Park, N. E. Lee, J. Lee, J. S. Park, and H. D. Park, Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas, Microelectronic Engineering, vol.82, issue.2, pp.82-119, 2005.
DOI : 10.1016/j.mee.2005.07.006

A. Goyal, V. Hood, and S. Tadigadapa, High speed anisotropic etching of Pyrex?? for microsystems applications, Journal of Non-Crystalline Solids, vol.352, issue.6-7, pp.352-657, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.063

. Matsushita, SF6-based deep reactive ion etching of (001) rutile TiO2 substrate for photonic crystal structure with wide complete photonic band gap, Japanese Journal of Applied Physics, vol.5, issue.2, pp.98002-98003, 2012.

A. M. Bond, D. Luscombe, K. B. Oldham, and C. G. Zoski, A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.249, issue.1-2, pp.249-250, 1988.
DOI : 10.1016/0022-0728(88)80345-0

N. Godino, X. Borrise, F. X. Munoz, F. J. Del-campo, and R. G. Compton, Mass Transport to Nanoelectrode Arrays and Limitations of the Diffusion Domain Approach: Theory and Experiment, The Journal of Physical Chemistry C, vol.113, issue.25, pp.113-11119, 2009.
DOI : 10.1021/jp9031354

K. Ino, T. Nishijo, T. Arai, Y. Kanno, Y. Takahashi et al., Local redoxcycling-based electrochemical chip device with deep microwells for evaluation of embryoid bodies, Angewandte Chemie, pp.51-6648, 2012.

A. Oleinick, F. Zhu, J. Yan, B. Mao, I. Svir et al., Theoretical Investigation of Generator-Collector Microwell Arrays for Improving Electroanalytical Selectivity: Application to Selective Dopamine Detection in the Presence of Ascorbic Acid, ChemPhysChem, vol.564, issue.9, pp.14-1887, 2013.
DOI : 10.1002/cphc.201300134

L. Zhuang, H. Zuo, Z. Wu, Y. Wang, D. Fang et al., Enhanced Electrochemical Nanoring Electrode for Analysis of Cytosol in Single Cells, Analytical Chemistry, vol.86, issue.23, pp.86-11517, 2014.
DOI : 10.1021/ac502437d

A. Szabo, Theory of the current at microelectrodes: application to ring electrodes, The Journal of Physical Chemistry, vol.91, issue.11, pp.91-3108, 1987.
DOI : 10.1021/j100295a092

W. E. Morf and N. F. De-rooij, Performance of amperometric sensors based on multiple microelectrode arrays, Sensors and Actuators B: Chemical, vol.44, issue.1-3, pp.44-538, 1997.
DOI : 10.1016/S0925-4005(97)00159-7

J. Guo and E. Linder, Cyclic Voltammograms at Coplanar and Shallow Recessed Microdisk Electrode Arrays: Guidelines for Design and Experiment, Analytical Chemistry, vol.81, issue.1, pp.81-130, 2009.
DOI : 10.1021/ac801592j

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707935

F. Sekli-belaidi, A. Civélas, V. Castagnola, A. Tsopela, L. Mazenq et al., PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid, Sensors & Actuators B, pp.214-215, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01148710

A. Oleinick, F. Zhu, J. Yan, B. Mao, I. Svir et al., Theoretical Investigation of Generator-Collector Microwell Arrays for Improving Electroanalytical Selectivity: Application to Selective Dopamine Detection in the Presence of Ascorbic Acid, ChemPhysChem, vol.564, issue.9, pp.14-1887, 2013.
DOI : 10.1002/cphc.201300134

D. Kuzmanova, I. D. Jansen, T. Schoenmarker, K. Nazmi, W. J. Teeuw et al., Vitamin C in plasma and leucocytes in relation to periodontis, Journal of Clinical Periodontology, pp.39-905, 2012.

R. M. Riggin, R. L. Alcorn, and P. T. Kissinger, Liquid Chromatographic method for monitoring therapeutic concentrations of L-dopamine and dopamine in serum, Clinic Chemistry, pp.22-782, 1976.

. Fadhila-sekli and . Belaïdi, She received the Master's Degree in process and environmental engineering from the FrenchInstitut National des Sciences Appliquées de Toulouse" (France) in 2006. She joined the FrenchLaboratoire de Génie Chimique, LGC) from the University of Toulouse (France) in 2007 and received the PhD degree in 2011. Finally, she joined the French "Laboratoire d'Analyse et d'Architecture des Systèmes" from the French "Centre National de la Recherche Scientifique" (LAAS-CNRS) in, 1980.

W. Tiddi-was-born-in-rome, He joined the French "Laboratoire d'Analyse et d'Architecture des Systèmes, LAAS) from the French "Centre National de la, 1989.

R. Scientifique, (CNRS) in 2013 for an internship, focusing on multiphysic modelling of detection mechanisms for integrated micro/nanoelectrodes. He received in 2014 the joint Master of Sciences Degree in Nanotechnologies for Information and Communication Technology (NICT) from the Italian, ) and the French "Institut polytechnique de Grenoble"

P. Dubreuil-was-born-on, He received the Engineer Degree in physical measurement from the French, 1966.

. France, He joined the FrenchLaboratoire d'Analyse et d'Architecture des Systèmes" from the FrenchCentre National de la Recherche Scientifique" (LAAS-CNRS) in the "Techniques and Equipments Applied to Microelectronics" (TEAM) service as an engineer in 1992. He is working on the development of plasma etching processes for the manufacturing, 2006.

. France, He joined the FrenchLaboratoire d'Analyse et d'Architecture des Systèmes" from the French "Centre National de la Recherche Scientifique, LAAS-CNRS) in 1998 and received the PhD degree from the French "Institut National des Sciences Appliquées de, 1998.

. Toulouse, he became lecturer at the French His research activities include the development of chemical microsensors for the detection in liquid phase, 2001.

P. Temple-boyer-was-born-on, He received his Engineer Degree in electronic engineering from the Ecole Supérieure d'Electricité (Paris ? France) in 1990 and his Master Degree in microelectronics from the French, 1966.

. He and . French, Laboratoire d'Analyse et d'Architecture des Systèmes of the FrenchCentre National de la Recherche Scientifique" (LAAS-CNRS) in 1992 and received the PhD degree from the French "Institut National des Sciences Appliquées de Toulouse" (France) in 1995. Since then, as a senior researcher, he has been working on the development of analysis micro/nanosystems using silicon-based technologies