E. Meng, X. Zhang, and W. Benard, Additive Processes for Polymeric Materials, MEMS Materials and Processes Handbook, pp.193-271, 2011.
DOI : 10.1007/978-0-387-47318-5_4

H. Lorenz, M. Laudon, and P. Renaud, Mechanical characterization of a new high-aspect-ratio near UV-photoresist, Microelectronic Engineering, vol.41, issue.42, pp.41-42, 1998.
DOI : 10.1016/S0167-9317(98)00086-0

C. Hassler, T. Boretius, and T. Stieglitz, Polymers for neural implants, Journal of Polymer Science Part B: Polymer Physics, vol.5, issue.10, pp.18-33, 2011.
DOI : 10.1002/polb.22169

C. A. Zorman, R. C. Roberts, and L. Chen, Additive Processes for Semiconductors and Dielectric Materials, 2011.
DOI : 10.1007/978-0-387-47318-5_2

G. Schmitt, J. W. Schultze, F. Faßbender, G. Buß, H. Lüth et al., Passivation and corrosion of microelectrode arrays, Materials and Corrosion, vol.51, issue.1, pp.44-3865, 1999.
DOI : 10.1002/(SICI)1521-4176(200001)51:1<20::AID-MACO20>3.0.CO;2-Q

URL : http://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/1858

J. Laconte, F. Iker, S. Jorez, N. André, J. Proost et al., Thin films stress extraction using micromachined structures and wafer curvature measurements, Microelectronic Engineering, vol.76, issue.1-4, pp.76-219, 2004.
DOI : 10.1016/j.mee.2004.07.003

X. Zhang, K. S. Chen, R. Ghodssi, A. A. Ayón, and S. M. Spearing, Residual stress and fracture in thick tetraethylorthosilicate (TEOS) and silane-based PECVD oxide films, Sensors and Actuators A: Physical, vol.91, issue.3, pp.91-373, 2001.
DOI : 10.1016/S0924-4247(01)00610-0

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, Stress investigation of PECVD dielectric layers for advanced optical MEMS, Journal of Micromechanics and Microengineering, vol.14, issue.3, pp.14-317, 2004.
DOI : 10.1088/0960-1317/14/3/001

G. Subhash, P. Hittepole, and S. Maiti, Mechanical properties of PECVD thin ceramic films, Journal of the European Ceramic Society, vol.30, issue.3, pp.30-689, 2010.
DOI : 10.1016/j.jeurceramsoc.2009.09.020

V. Bhatt and S. Chandra, Silicon dioxide films by RF sputtering for microelectronic and MEMS applications, Journal of Micromechanics and Microengineering, vol.17, issue.5, pp.1066-1077, 2007.
DOI : 10.1088/0960-1317/17/5/029

J. Gardeniers, H. Tilmans, and C. Visser, LPCVD silicon???rich silicon nitride films for applications in micromechanics, studied with statistical experimental design*, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.5, pp.14-2879, 1996.
DOI : 10.1116/1.580239

J. Yang, J. Gaspar, and O. Paul, Fracture properties of LPCVD silicon nitride and thermally grown silicon oxide thin films from the load-deflection of long Si3N4 and SiO2/Si3N4 diaphragms, Journal of Microelectromechanical Systems, pp.17-1120, 2008.

P. Temple-boyer, C. Rossi, E. Saint-etienne, and E. Scheid, Residual stress in low pressure chemical vapor deposition SiNx films deposited from silane and ammonia, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.16, issue.4, p.16, 1998.
DOI : 10.1116/1.581302

A. Kaushik, H. Kahn, and A. Heuer, Wafer-level mechanical characterization of silicon nitride MEMS, Journal of Microelectromechanical Systems, vol.14, issue.2, pp.14-359, 2005.
DOI : 10.1109/JMEMS.2004.839315

C. H. Mastrangelo, Y. C. Tai, and R. S. Muller, Thermophysical properties of low-residual stress, Silicon-rich, LPCVD silicon nitride films, Sensors and Actuators A: Physical, vol.23, issue.1-3, pp.23-856, 1990.
DOI : 10.1016/0924-4247(90)87046-L

L. S. Fan, R. T. Howe, and R. S. Muller, Fracture toughness characterization of brittle thin films, Sensors and Actuators A, pp.23-872, 1990.
DOI : 10.1016/0924-4247(90)87049-o

R. M. Tiggelaar, A. W. Groenland, R. G. Sanders, and J. G. Gardeniers, Electrical properties of low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650?????C, Journal of Applied Physics, vol.105, issue.3, pp.105-106, 2009.
DOI : 10.1016/j.microrel.2004.11.043

G. F. Eriksen and K. Dyrbye, Protective coatings in harsh environments, Journal of Micromechanics and Microengineering, vol.6, issue.1, pp.55-57, 1996.
DOI : 10.1088/0960-1317/6/1/011

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications, Microelectronics Reliability, vol.50, issue.8, pp.50-1103, 2010.
DOI : 10.1016/j.microrel.2010.04.011

URL : https://hal.archives-ouvertes.fr/hal-00549491

S. King, R. Chu, G. Xu, and J. Huening, Intrinsic stress effect on fracture toughness of plasma enhanced chemical vapor deposited SiNx:H films, Thin Solid Films, vol.518, issue.17, pp.518-4898, 2010.
DOI : 10.1016/j.tsf.2010.03.031

P. H. Wu, I. K. Lin, H. Y. Yan, K. S. Ou, K. S. Chen et al., Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing, Sensors and Actuators A, pp.168-117, 2011.
DOI : 10.1016/j.sna.2011.03.043

S. Vrtacnik, P. Amon, and . Sterian, Residual stress in thin films PECVD depositions: a review, Journal of Optoelectronic and Advanced Materials, pp.13-387, 2011.

J. Gaspar, M. E. Schmidt, J. Held, and O. Paul, Wafer-Scale Microtensile Testing of Thin Films, Journal of Microelectromechanical Systems, vol.18, issue.5, pp.18-1062, 2009.
DOI : 10.1109/JMEMS.2009.2029210

H. U. Rahman, A. Gentle, E. Gauja, and R. Ramer, Characterisation of dielectric properties of PECVD silicon nitride for RF MEMS using reflectance measurements, Proceedings of the 12 th IEEE International Conference, 2008.

M. Jo, S. Park, and S. Park, A study on resistance of PECVD silicon nitride thin film to thermal stress-induced cracking, Applied Surface Science, vol.140, issue.1-2, pp.140-152, 1999.
DOI : 10.1016/S0169-4332(98)00366-3

C. Iliescu, F. Tay, and J. Wei, layers at high deposition rates using high power and high frequency for MEMS applications, Journal of Micromechanics and Microengineering, vol.16, issue.4, pp.16-869, 2006.
DOI : 10.1088/0960-1317/16/4/025

. Faraone, Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films, Material Science and Engineering A, pp.435-453, 2006.

W. Zhou, J. Yang, Y. Li, A. Ji, F. Yang et al., Bulge testing and fracture properties of plasma-enhanced chemical vapour deposited silicon nitride thin films, Thin Solid Films, pp.517-1989, 2009.

X. Fu, R. Jezeski, C. Zorman, and M. Mehregany, Use of deposition pressure to control residual stress in polycrystalline SiC films, Applied Physics Letters, vol.84, issue.3, pp.341-343, 2004.
DOI : 10.1063/1.338325

D. Choi, R. J. Shinavski, W. S. Steffier, and S. M. Spearing, Residual stress in thick lowpressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates, Journal of Applied Physics, pp.97-98, 2005.
DOI : 10.1063/1.1866495

X. A. Fu, J. L. Dunning, M. Mehregany, and C. A. Zorman, Low Stress Polycrystalline SiC Thin Films Suitable for MEMS Applications, Journal of The Electrochemical Society, vol.158, issue.6, pp.158-675, 2011.
DOI : 10.1149/1.3575160

A. Klumpp, U. Schaber, H. L. Offereins, K. Kühl, and H. Sandmaier, Amorphous silicon carbide and its application in silicon micromachining, Sensors and Actuators A: Physical, vol.41, issue.1-3, pp.41-310, 1994.
DOI : 10.1016/0924-4247(94)80129-0

H. Zhang, H. Guo, Y. Wang, G. Zhang, and Z. Li, Study on a PECVD SiC-coated pressure sensor, Journal of Micromechanics and Microengineering, vol.17, issue.3, pp.17-426, 2007.
DOI : 10.1088/0960-1317/17/3/002

P. Sarro, C. De-boer, E. Korkmaz, and J. Laros, Low-stress PECVD SiC thin films for ICcompatible microstructures, Sensors and Actuator A, pp.67-175, 1998.
DOI : 10.1016/s0924-4247(97)01730-5

W. Daves, A. Krauss, N. Behnel, V. Haeublein, A. Bauer et al., Amorphous silicon carbide thin films (a-SiC:H) deposited by plasma-enhanced chemical vapor deposition as protective coatings for harsh environment applications, Thin Solid Films, vol.519, issue.18, pp.519-5892, 2011.
DOI : 10.1016/j.tsf.2011.02.089

F. Nabki, T. A. Dusatko, S. Vengallatore, and M. N. , Low-Stress CMOS-Compatible Silicon Carbide Surface-Micromachining Technology???Part I: Process Development and Characterization, Journal of Microelectromechanical Systems, vol.20, issue.3, pp.20-720, 2011.
DOI : 10.1109/JMEMS.2011.2111355

N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, and J. Tellenbach, Sputtered silicon carbide thin films as protective coating for MEMS applications, Surface and Coatings Technology, vol.125, issue.1-3, pp.125-246, 2000.
DOI : 10.1016/S0257-8972(99)00568-X

S. Inoue, T. Namazu, H. Tawa, M. Niibe, and K. Koterazawa, Stress control of a-SiC films deposited by dual source dc magnetron sputtering, Vacuum, vol.80, issue.7, pp.80-744, 2006.
DOI : 10.1016/j.vacuum.2005.11.041

M. C. Christopher, J. L. Davidson, L. Jiang, W. P. Kang, J. J. Sheehy et al., Diamond film as an FET gate dielectric material, Diamond Materials VI, pp.354-359, 2000.

D. K. Reinhard, T. A. Grotjohn, M. Becker, M. K. Yaran, T. Schuelke et al., Fabrication and properties of ultranano, nano, and microcrystalline diamond membranes and sheets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.22, issue.6, pp.22-2811, 2004.
DOI : 10.1116/1.1819928

O. Auciello, J. Birrell, J. Carlisle, J. Gerbi, X. Xiao et al., Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films, Journal of Physics: Condensed Matter, vol.16, issue.16, pp.16-539, 2004.
DOI : 10.1088/0953-8984/16/16/R02

X. Xiao, B. W. Sheldon, Y. Qi, and A. K. Kothari, Intrinsic stress evolution in nanocrystalline diamond thin films with deposition temperature, Applied Physics Letters, vol.92, issue.13, pp.92-93, 2008.
DOI : 10.1103/PhysRevB.69.235401

H. D. Espinosa, B. C. Prorok, B. Peng, K. H. Kim, N. Moldovan et al., Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices, Experimental Mechanics, vol.10, issue.121, pp.43-256, 2003.
DOI : 10.1007/BF02410524

. Rosner, Pulsed laser deposition of non-stoichiometric silicon nitride (SiNx) thin films, Applied Physics A, pp.79-1525, 2004.

H. Sato, A. Izumi, A. Masuda, and H. Matsumura, Low-k silicon nitride film for copper interconnects process prepared by catalytic chemical vapour deposition method at low temperature, Thin Solid Films, pp.395-280, 2001.
DOI : 10.1016/s0040-6090(01)01284-6

S. B. Patil, A. Kumbhar, P. Waghmare, V. Rao, and R. Dusane, Low temperature silicon nitride deposited by Cat-CVD for deep sub-micron metal???oxide???semiconductor devices, Thin Solid Films, vol.395, issue.1-2, pp.395-270, 2001.
DOI : 10.1016/S0040-6090(01)01281-0

S. Garcia, J. Martin, I. Martil, M. Fernandez, and G. Gonzalez-diaz, Deposition of low temperature Si-based insulators by the electron cyclotron resonance plasma method, Thin Solid Films, vol.317, issue.1-2, pp.317-116, 1998.
DOI : 10.1016/S0040-6090(97)00510-5

A. J. Flewitt, A. P. Dyson, J. Robertson, and W. I. Milne, Low temperature growth of silicon nitride by electron cyclotron resonance plasma enhanced chemical vapour deposition, Thin Solid Films, vol.383, issue.1-2, pp.383-172, 2001.
DOI : 10.1016/S0040-6090(00)01628-X

F. S. Pool, Nitrogen plasma instabilities and the growth of silicon nitride by electron cyclotron resonance microwave plasma chemical vapour deposition, Journal of Applied Physics, pp.81-2839, 1997.

G. I. Isai, J. Holleman, H. Wallinga, and P. H. Woerlee, Low Hydrogen Content Silicon Nitride Films Deposited at Room Temperature with an ECR Plasma Source, Journal of The Electrochemical Society, vol.151, issue.10, pp.151-649, 2004.
DOI : 10.1149/1.1787498

URL : http://doc.utwente.nl/61685/1/low_hydrogen.pdf

S. Jatta, K. Haberle, A. Klein, R. Schafranek, B. Koegel et al., Depositon of Dielectric Films with Inductively Coupled Plasma-CVD in Dependence on Pressure and Two RF-Power-Sources, Plasma Processes and Polymers, vol.74, issue.5, pp.582-587, 2009.
DOI : 10.1002/ppap.200931405

L. Da-silva-zambom, R. Domingues-mansano, and R. Furlan, Silicon nitride deposited by inductively coupled plasma using silane and nitrogen, Vacuum, vol.65, issue.2, pp.65-213, 2002.
DOI : 10.1016/S0042-207X(01)00476-6

Q. Xu, Y. Ra, M. Bachman, and G. P. Li, Characterization of low-temperature silicon nitride films produced by inductively coupled plasma chemical vapour deposition, Journal of Vacuum Science and Technology A, pp.27-145, 2009.

A. Kshirsagar, P. Nyaupane, D. Bodas, S. P. Duttagupta, and S. A. Gangal, Deposition and characterization of low temperature silicon nitride films deposited by inductively coupled plasma CVD, Applied Surface Science, vol.257, issue.11, pp.257-5052, 2011.
DOI : 10.1016/j.apsusc.2011.01.020

T. Owain, White paper -Inductively coupled plasma chemical vapour deposition (ICP- CVD)", Oxford Instruments Plasma Technology Ltd, 2010.

H. Zhou, K. Elgaid, C. Wilkinson, and I. Thayne, Low-Hydrogen-Content Silicon Nitride Deposited at Room Temperature by Inductively Coupled Plasma Deposition, Japanese Journal of Applied Physics, vol.45, issue.10B, pp.45-8388, 2006.
DOI : 10.1143/JJAP.45.8388

S. S. Han, B. H. Jun, K. No, and B. S. Bae, Preparation of a-SiNx thin film with low hydrogen content by inductively coupled plasma enhanced chemical vapour deposition, Journal of the Electrochemical Society, pp.145-652, 1998.

E. Dehan, P. Temple-boyer, R. Henda, J. J. Pedroviejo, and E. Scheid, Optical and structural properties of SiOx and SiNx materials, Thin Solid Films, vol.266, issue.1, pp.266-280, 1995.
DOI : 10.1016/0040-6090(95)06635-7

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2 nd Revised edition, 2001.

C. Gabrielli, M. Keddam, N. Portail, P. Rousseau, H. Takenouti et al., Electrochemical impedance spectroscopy investigations of a microelectrode, p.24

A. Tsopéla-was-born-in-athens and G. In, She received the master degree in Chemical Engineering from the National Technical University of Athens (NTUA), in 2011. She joined the "Laboratoire d'Architecture et d'Analyse des Systèmes, Centre National de la Recherche Scientifique" (LAAS-CNRS), in 2011 as PhD Student. She is carrying out her experimental research in the development of microsensors with environmental applications, 1988.