B. Hajji, P. Temple-boyer, J. Launay, T. D. Conto, and A. Martinez, pH, pK and pNa detection properties of SiO2/Si3N4 ISFET chemical sensors, Microelectronics Reliability, vol.40, issue.4-5, pp.40-783, 2000.
DOI : 10.1016/S0026-2714(99)00285-1

Z. M. Baccar, N. Jaffrezic-renault, C. Martelet, H. Jaffrezic, G. Marest et al., Sodium microsensors based on ISFET/REFET prepared through an ion-implantation process fully compatible with a standard silicon technology, Sensors and Actuators B: Chemical, vol.32, issue.2, pp.32-101, 1996.
DOI : 10.1016/0925-4005(96)80117-1

P. Shin and T. Mikolajick, H + , Na + and K + ion sensing properties of sodium and aluminium co-implanted LPCVD silicon oxynitride thin films, Applied Surface Science, pp.207-351, 2003.

U. Oesch, D. Amman, and W. Simon, Ion-selective membrane electrodes for clinical use, Clinical Chemistry, vol.32, issue.8, pp.1448-1459, 1986.

U. Oesch, S. Caras, and J. Janata, Field effect transistors sensitive to sodium and ammonium ions, Analytical Chemistry, vol.53, issue.13, pp.53-1983, 1981.
DOI : 10.1021/ac00236a008

M. Chudy, W. Wroblewski, A. Dybko, and Z. Brzozka, Multi-ion analysis based on versatile sensor head, Sensors and Actuators B: Chemical, vol.78, issue.1-3, pp.78-320, 2001.
DOI : 10.1016/S0925-4005(01)00833-4

D. G. Pijanowska, E. Luboch, J. F. Biernat, M. Dawgul, and W. Torbicz, Na+-selective ChemFETs based on a novel ionophore: bis(phenylbenzo)-13-azocrown-5, Sensors and Actuators B: Chemical, vol.58, issue.1-3, pp.58-384, 1999.
DOI : 10.1016/S0925-4005(99)00101-X

J. A. Brunink, J. R. Haak, J. G. Bomer, and D. Reinhoudt, Chemically modified field-effect transistors; a sodium ion selective sensor based on calix[4]arene receptor molecules, Analytica Chimica Acta, vol.254, issue.1-2, pp.254-75, 1991.
DOI : 10.1016/0003-2670(91)90011-S

URL : http://purl.utwente.nl/publications/12543

J. Muñoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret et al., Photosensitive polyurethanes applied to the development of ChemFET and EnFET devices for biomedical sensing, Biosensors and Bioelectronics, pp.12-577, 1997.

A. Ipatov, N. Abramova, A. Bratov, and C. Dominguez, Integrated multisensor chip with sequential injection technique as a base for ???electronic tongue??? devices, Sensors and Actuators B: Chemical, vol.131, issue.1, pp.131-179, 2008.
DOI : 10.1016/j.snb.2007.12.028

N. Abramova and A. Bratov, Photocurable Polymers for Ion Selective Field Effect Transistors. 20 Years of Applications, Sensors, vol.37, issue.19, pp.7097-7110, 2009.
DOI : 10.3390/s90907097

W. Sant, P. Temple-boyer, E. Chanié, J. Launay, and A. Martinez, On-line monitoring of urea using enzymatic field effect transistors, Sensors and Actuators B: Chemical, vol.160, issue.1, pp.160-59, 2011.
DOI : 10.1016/j.snb.2011.07.012

URL : https://hal.archives-ouvertes.fr/hal-01511364

Y. Tsujimura, M. Yokoyama, and K. Kimura, Comparison between silicone-rubber membranes and plasticized poly(viny1 chloride) membranes containing calix[4]arene ionophores for sodium ion-sensitive field-effect transistors in applicability to sodium assay in human body fluids, Sensors and Actuators B, pp.22-195, 1994.

H. J. Lee, H. J. Oh, G. Cui, G. S. Cha, and H. Nam, All-Solid-State Sodium-Selective Electrodes Based on Room Temperature Vulcanizing-Type Silicone Rubber Matrix., Analytical Sciences, vol.13, issue.Supplement, pp.13-289, 1997.
DOI : 10.2116/analsci.13.Supplement_289

I. Humenuyk, B. Torbiéro, S. Assié-souleille, R. Colin, X. Dollat et al., Development of pNH4-isfets microsensors for water analysis, Microelectronics Journal, vol.37, issue.6, pp.37-475, 2006.
DOI : 10.1016/j.mejo.2005.09.024

J. A. Brunink, The design of durable Na+-selective CHEMFETs based on polysiloxane membranes, Journal of Electroanalytical Chemistry, vol.378, issue.1-2, pp.185-200, 1994.
DOI : 10.1016/0022-0728(94)87071-3

K. Kimura, Silicone-rubber membrane sodium-ion sensors based on calix[4]arene neutral carriers, Pure and Applied Chemistry, vol.67, issue.7, pp.67-1085, 1995.
DOI : 10.1351/pac199567071085

D. N. Reinhoudt, Durable chemical sensors based on field-effect transistors, Sensors and Actuators B: Chemical, vol.24, issue.1-3, pp.24-25, 1995.
DOI : 10.1016/0925-4005(95)85042-2

URL : http://purl.utwente.nl/publications/12394

S. J. Harris, Chemically modified field effect transistors; a sodium ion selective sensor based on calix[4]arene receptor molecules, Analytica Chimica Acta, pp.254-75, 1991.

C. Dumschat, S. Alazard, S. Adam, M. Knoll, and K. Camman, Filled fluorosiloxane as matrix for ion-selective membranes, Analyst, pp.121-527, 1996.
DOI : 10.1039/an9962100527

G. Hogg, O. Lutze, and K. Camman, Novel membrane material for ion-selective field-effect transistors with extended lifetime and improved selectivity, Analytica Chimica Acta, vol.335, issue.1-2, pp.335-103, 1996.
DOI : 10.1016/S0003-2670(96)00284-X

P. Temple-boyer, J. Launay, I. Humenyuk, T. D. Conto, A. Martinez et al., Study of front-side connected chemical field effect transistor for water analysis, Microelectronics Reliability, pp.44-443, 2004.
DOI : 10.1016/j.microrel.2003.10.001

Y. Umezawa, K. Umezawa, and H. Sato, Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KABpot values, Pure and Applied Chemistry, pp.67-507, 1995.
DOI : 10.1351/pac199567030507

M. W. Shinwari, Microfabricated Reference Electrodes and their Biosensing Applications, Sensors, vol.19, issue.36, pp.10-1679, 2010.
DOI : 10.1109/ICSENS.2005.1597971

URL : http://doi.org/10.3390/s100301679

L. Tymecki, Screen-printed reference electrodes for potentiometric measurements, Analytica Chimica Acta, vol.526, issue.1, pp.3-11, 2004.
DOI : 10.1016/j.aca.2004.08.056

M. W. Shinwari, D. Zhitomirsky, I. A. Deen, P. R. Selvaganapathy, M. J. Deen et al., Microfabricated Reference Electrodes and their Biosensing Applications, Sensors, vol.19, issue.36, pp.10-1679, 2010.
DOI : 10.1109/ICSENS.2005.1597971

URL : http://doi.org/10.3390/s100301679

I. J. Yoon, D. K. Lee, H. Nam, G. S. Cha, T. D. Strong et al., Ion sensors using onecomponent room temperature vulcanized silicone rubber matrices, Journal of Electroanalytical Chemistry, pp.464-135, 1999.
DOI : 10.1016/s0022-0728(99)00010-8

A. Cazalé-was-born-on, He received his Master's Degree in electronics embedded micro-systems from the, p.14, 1985.

. Toulouse, He joined the Laboratoire d'Architecture et d'Analyse des Systèmes of the French Centre National de la Recherche Scientifique (LAAS-CNRS) in 2000 and received the PhD degree from the Université Paul Sabatier de Toulouse (France) in 2004. Since then, he has joined the HEMODIA company (France) as an R&D engineer and has been working on the development of ChemFET microsensors for medical applications, 1999.

. Laboratoire-d-'architecture, Analyse des Systèmes from the FrenchCentre National de la Recherche Scientifique, LAAS-CNRS) in 1998 and received the PhD degree from the Institut National des Sciences Appliquées de Toulouse (France), 2001.

F. Ginot-was-born-on, He received his Engineer Master's Degree from the Ecole Polytechnique (Paris ? France) in 1985 and a PhD in molecular biology from Paris University VII in 1989 After various jobs in R&D, at the interface between engineering and biosciences, he joined HEMODIA/CAPTOMED company as vice-president for Research & Development, 1962.

P. Temple-boyer-was-born-on, He received his Engineer Master's Degree in electronic engineering from the Ecole Supérieure d'Electricité (Paris ? France) in 1990 and his Master's Degree in microelectronics from the, 1966.