Y. Sun, J. H. Pang, C. K. Wong, and F. Su, Finite element formulation for a digital image correlation method, Applied Optics, vol.44, issue.34, pp.44-7357, 2005.
DOI : 10.1364/AO.44.007357

G. Besnard, F. Hild, and S. Roux, ???Finite-Element??? Displacement Fields Analysis from Digital Images: Application to Portevin???Le Ch??telier Bands, Experimental Mechanics, vol.404, issue.3, pp.46-789, 2006.
DOI : 10.1080/14786440808520347

URL : https://hal.archives-ouvertes.fr/hal-00124513/file/EM2-ccsd.pdf

J. Fehrenbach and M. Masmoudi, A fast algorithm for image registration, Comptes Rendus Mathematique, vol.346, issue.9-10, pp.593-598, 2008.
DOI : 10.1016/j.crma.2008.03.019

URL : https://hal.archives-ouvertes.fr/hal-00995847

J. Rannou, N. Limodin, J. Réthoré, A. Gravouil, W. Ludwig et al., Three dimensional experimental and numerical multiscale analysis of a fatigue crack, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.21-22, pp.199-1307, 2010.
DOI : 10.1016/j.cma.2009.09.013

URL : https://hal.archives-ouvertes.fr/hal-00430486

R. Fedele, L. Galantucci, and A. Ciani, Global 2D digital image correlation for motion estimation in a finite element framework: a variational formulation and a regularized, pyramidal, multi-grid implementation, International Journal for Numerical Methods in Engineering, vol.195, issue.37, pp.96-739, 2013.
DOI : 10.1016/j.cma.2005.07.026

J. Passieux, F. Bugarin, C. David, J. Périé, and L. Robert, Multiscale Displacement Field Measurement Using Digital Image Correlation: Application to the Identification of Elastic Properties, Experimental Mechanics, vol.51, issue.2, pp.55-121, 2015.
DOI : 10.1007/s11340-010-9342-6

URL : https://hal.archives-ouvertes.fr/hal-00949038

L. Wittevrongel, P. Lava, S. V. Lomov, and D. Debruyne, A Self Adaptive Global Digital Image Correlation Algorithm, Experimental Mechanics, vol.48, issue.6, pp.55-361, 2015.
DOI : 10.1111/j.1475-1305.2012.00840.x

J. Van-beeck, J. Neggers, P. J. Schreurs, J. P. Hoefnagels, and M. G. Geers, Quantification of threedimensional surface deformation using global digital image correlation, Experimental Mechanics, pp.54-557, 2014.

M. Bornert, F. Brémand, P. Doumalin, J. Dupré, M. Fazzini et al., Assessment of Digital Image Correlation Measurement Errors: Methodology and Results, Experimental Mechanics, vol.43, issue.4, pp.353-370, 2009.
DOI : 10.1117/12.7972925

URL : https://hal.archives-ouvertes.fr/hal-00881043

J. Réthoré, S. Roux, and F. Hild, An extended and integrated digital image correlation technique applied to the analysis of fractured samples, European Journal of Computational Mechanics, vol.57, issue.15, pp.18-285, 2009.
DOI : 10.1002/nme.849

J. Réthoré, A fully integrated noise robust strategy for the identification of constitutive laws from digital images, International Journal for Numerical Methods in Engineering, vol.199, issue.21-22, pp.631-660, 2010.
DOI : 10.1002/nme.2908

H. Leclerc, J. Périé, S. Roux, and F. Hild, Voxel-Scale Digital Volume Correlation, Experimental Mechanics, vol.22, issue.9, pp.51-479, 2011.
DOI : 10.1179/174328406X114135

URL : https://hal.archives-ouvertes.fr/hal-00521193

H. Leclerc, J. Périé, F. Hild, and S. Roux, Digital volume correlation: what are the limits to the spatial resolution?, Mechanics & Industry, vol.63, issue.6, pp.13-361, 2012.
DOI : 10.1177/0309324711409999

URL : https://hal.archives-ouvertes.fr/hal-00848721

J. Réthoré, T. Muhibullah, M. Elguedj, P. Coret, A. Chaudet et al., Robust identification of elastoplastic constitutive law parameters from digital images using 3D kinematics, International Journal of Solids and Structures, pp.50-73, 2013.

J. Réthoré, Automatic crack tip detection and stress intensity factors estimation of curved cracks from digital images, International Journal for Numerical Methods in Engineering, vol.84, issue.214004, pp.516-534, 2015.
DOI : 10.1002/nme.2908

R. B. Lehoucq, D. Z. Turner, and C. A. Garavito-garz, PDE Constrained Optimization for Digital Image Correlation, Sandia Report, pp.2015-8515, 2015.
DOI : 10.1111/str.12138

T. F. Morgeneyer, L. Helfen, H. Mubarak, and F. Hild, 3D Digital Volume Correlation of Synchrotron Radiation Laminography Images of Ductile Crack Initiation: An Initial Feasibility Study, Experimental Mechanics, vol.51, issue.4, pp.53-543, 2013.
DOI : 10.1007/s11340-012-9603-7

URL : https://hal.archives-ouvertes.fr/hal-00848726

G. Requena, G. Fiedler, B. Seiser, P. Degischer, M. D. Michiel et al., 3D-Quantification of the distribution of continuous fibres in unidirectionally reinforced composites, Composites Part A: Applied Science and Manufacturing, vol.40, issue.2, pp.40-152, 2009.
DOI : 10.1016/j.compositesa.2008.10.014

M. Bornert, F. Valès, H. Garbhi, and D. N. Minh, Multiscale Full-Field Strain Measurements for Micromechanical Investigations of the Hydromechanical Behaviour of Clayey Rocks, Strain, vol.339, issue.1, pp.46-79, 2010.
DOI : 10.1016/j.pce.2003.11.006

URL : https://hal.archives-ouvertes.fr/hal-00535703

J. Passieux, J. Réthoré, A. Gravouil, and M. Baietto, Local/global non-intrusive crack propagation simulation using multigrid XFEM solver, Computational Mechanics, pp.52-1381, 2013.
DOI : 10.1007/s00466-013-0882-3

URL : https://hal.archives-ouvertes.fr/hal-00824125

G. Guguin, O. Allix, P. Gosselet, and S. Guinard, Nonintrusive coupling of 3D and 2D laminated composite models based on finite element 3D recovery, International Journal for Numerical Methods in Engineering, vol.85, issue.17, pp.324-343, 2014.
DOI : 10.1016/j.compstruc.2006.08.085

URL : https://hal.archives-ouvertes.fr/hal-01079237

R. Bouclier, J. Passieux, and M. Salaün, Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture, Computer Methods in Applied Mechanics and Engineering, vol.300, pp.1-26, 2016.
DOI : 10.1016/j.cma.2015.11.007

URL : https://hal.archives-ouvertes.fr/hal-01295461

J. Passieux, J. Périé, and M. Salaün, A dual domain decomposition method for finite element digital image correlation, International Journal for Numerical Methods in Engineering, vol.56, issue.2, pp.1670-1682, 2015.
DOI : 10.1007/s00466-013-0882-3

URL : https://hal.archives-ouvertes.fr/hal-01094665

B. K. Horn and G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

URL : http://www.liralab.it/teaching/SINA/papers/horn-schunck-81.pdf

S. Roux, J. Réthoré, and F. Hild, Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks, Journal of Physics D: Applied Physics, vol.42, issue.21, pp.42-214004, 2009.
DOI : 10.1088/0022-3727/42/21/214004

URL : https://hal.archives-ouvertes.fr/hal-00381646

J. Neggers, B. Blaysat, J. P. Hoefnagels, and M. G. Geers, On image gradients in digital image correlation, International Journal for Numerical Methods in Engineering, vol.49, issue.3, pp.105-243, 2016.
DOI : 10.1007/s11340-008-9204-7

URL : https://pure.tue.nl/ws/files/20993582/NeggersOnimage2016.pdf

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, Proceedings of Imaging Understanding Workshop, pp.121-130, 1981.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. Mcneill, Determination of displacements using an improved digital correlation method, Image and Vision Computing, vol.1, issue.3, pp.1-133, 1983.
DOI : 10.1016/0262-8856(83)90064-1

M. A. Sutton, J. Orteu, and H. Schreier, Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01729219

J. Passieux and J. Périé, High resolution digital image correlation using proper generalized decomposition: PGD-DIC, International Journal for Numerical Methods in Engineering, vol.49, issue.2, pp.92-2012
DOI : 10.1007/978-1-4612-1432-8

URL : https://hal.archives-ouvertes.fr/hal-00708541

L. A. Gomes-perini, J. Passieux, and J. Périé, A Multigrid PGD-based Algorithm for Volumetric Displacement Fields Measurements, Strain, vol.46, issue.21, pp.50-355, 2014.
DOI : 10.1007/s00466-010-0496-y

URL : https://hal.archives-ouvertes.fr/hal-01015904

D. Claire, F. Hild, and S. Roux, A finite element formulation to identify damage fields: the equilibrium gap method, International Journal for Numerical Methods in Engineering, vol.61, issue.2, pp.61-189, 2004.
DOI : 10.1002/nme.1057

URL : https://hal.archives-ouvertes.fr/hal-00002899

F. Hild and S. Roux, Measuring stress intensity factors with a camera: Integrated digital image correlation (I-DIC), Comptes Rendus M??canique, vol.334, issue.1, pp.8-12, 2006.
DOI : 10.1016/j.crme.2005.11.002

URL : https://hal.archives-ouvertes.fr/hal-00322201

P. Gosselet and C. Rey, Non-overlapping domain decomposition methods in structural mechanics, Archives of Computational Methods in Engineering, vol.48, issue.2, pp.515-572, 2006.
DOI : 10.1016/S0764-4442(01)02028-6

URL : https://hal.archives-ouvertes.fr/hal-01224408

C. Farhat and F. X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, International Journal for Numerical Methods in Engineering, vol.28, issue.6, pp.1205-1227, 1991.
DOI : 10.1016/B978-0-12-068650-6.50029-0

P. , L. Tallec, Y. De-roeck, and M. Vidrascu, Domain-decomposition methods for large linearly elliptic three dimensional problems, Journal of Computational and Applied Mathematics, pp.34-93, 1991.
DOI : 10.1016/0377-0427(91)90150-i

URL : https://hal.archives-ouvertes.fr/inria-00075376

J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering, vol.13, issue.3, pp.233-241, 1993.
DOI : 10.1137/1.9781611971057.ch5

URL : http://ftp.ccs.uky.edu/mgnet/www/mgnet/www/mgnet/papers/Mandel/bdd.ps.gz

P. Ladevèze, Nonlinear computationnal structural mechanics?New approaches and non-incremental methods of calculation, 1999.

J. Passieux, P. Ladevèze, and D. Néron, A scalable time???space multiscale domain decomposition method: adaptive time scale separation, Computational Mechanics, vol.39, issue.32???33, pp.46-621, 2010.
DOI : 10.1093/acprof:oso/9780199233854.003.0009

P. Gosselet, V. Chiaruttini, C. Rey, and F. , A monolithic strategy based on an hybrid domain decomposition method for multiphysic problems. Application to poroelasticity. Revue européenne des élements finis, pp.13-523, 2004.
DOI : 10.3166/reef.13.523-534

URL : https://hal.archives-ouvertes.fr/hal-01224415

Y. Saad, Iterative methods for sparse linear systems, 2000.
DOI : 10.1137/1.9780898718003

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

URL : http://www.stat.uchicago.edu/~lekheng/courses/324/saad-schultz.pdf

P. Gosselet, C. Rey, and J. Pebrel, Total and selective reuse of Krylov subspaces for the resolution of sequences of nonlinear structural problems, International Journal for Numerical Methods in Engineering, vol.2, issue.2, pp.94-60, 2013.
DOI : 10.1002/nla.1680020205

URL : https://hal.archives-ouvertes.fr/hal-00782841

A. Moussawi, G. Lubineau, J. Xu, and B. Pan, A 3D domain decomposition approach for the identification of spatially varying elastic material parameters, International Journal for Numerical Methods in Engineering, vol.265, issue.18, pp.1431-1448, 2015.
DOI : 10.1016/j.cma.2013.06.003