M. Dondi, M. Marsigli, and B. Fabbri, Recycling of industrial and urban wastes in brick production -a review, Tile & Brick Int, vol.13, pp.218-225, 1997.

M. Dondi, M. Marsigli, and B. Fabbri, Recycling of industrial and urban wastes in brick production -a review, Tile & Brick Int, vol.13, pp.302-315, 1997.

A. Zani, A. Tenaglia, and A. Panigada, Re-use of papermaking sludge in brick production, Ziegelind. Int, vol.12, pp.682-690, 1990.

A. Kohler, Use of industrial wastes with combustible components in the brick and tile industry, Ziegelind. Int, vol.9, pp.441-445, 1988.

A. Mohajerani, A. A. Kadir, and L. Larobina, A practical proposal for solving the world's cigarette butt problem: recycling in fired clay bricks, Waste Manage, vol.52, pp.228-244, 2016.

C. Bories, M. E. Borredon, E. Vedrenne, and G. Vilarem, Development of eco-friendly porous fired clay bricks using pore-forming agents: a review, J. Environ. Manage, vol.143, pp.186-196, 2014.

S. N. Monteiro and C. M. Vieira, On the production of fired clay bricks from waste materials: a critical update, Constr. Build. Mater, vol.68, pp.599-610, 2014.

P. Velasco, M. P. Morales-ortíz, M. A. Giró, and L. M. Velasco, Fired clay bricks manufactured by adding wastes as sustainable construction material -a review, Constr. Build. Mater, vol.63, pp.97-107, 2014.

I. Demir, Effect of organic residues addition on the technological properties of clay bricks, Waste Manage, vol.28, pp.622-627, 2008.

M. Sutcu, S. Ozturk, E. Yalamac, and O. Gencel, Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method, J. Environ. Manage, vol.181, pp.185-192, 2016.

V. Bánhidi and L. A. Gömze, Improvement of insulation properties of conventional brick products, Mater. Sci. Forum, vol.589, pp.1-6, 2008.

D. Eliche-quesada, S. Martínez-martínez, L. Pérez-villarejo, F. J. Iglesias-godino, C. Martínez-garcía et al., Corpas-Iglesias, Valorization of biodiesel production residues in making porous clay brick, Fuel Process Technol, vol.103, pp.166-173, 2012.

M. A. Mendívil, P. Muñoz, M. P. Morales, V. Letelier, and M. C. Juárez, Grapevine shoots for improving thermal properties of structural fired clay bricks: new method of agricultural-waste valorization, J. Mater. Civ. Eng, vol.29, p.4017074, 2017.

A. A. Kadir and A. Mohajerani, Recycling cigarette butts in lightweight fired clay bricks, Constr. Mater, vol.164, pp.219-229, 2011.

L. Pérez-villarejo, D. Eliche-quesada, F. J. Iglesias-godino, C. Martínez-garcía, and F. A. , Corpas-Iglesias, Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks, J. Environ. Manage, vol.95, pp.349-354, 2012.

C. Bories, L. Aouba, E. Vedrenne, and G. Vilarem, Fired clay bricks using agricultural biomass wastes: Study and characterization, Constr. Build. Mater, vol.91, pp.158-163, 2015.

C. M. Vieira, P. M. Andrade, G. S. Maciel, F. Vernilli, and S. N. Monteiro, Incorporation of fine steel sludge waste into red ceramic, Mater. Sci. Eng. A, vol.427, pp.142-147, 2006.

A. Ukwatta and A. Mohajerani, Effect of organic content in biosolids on the properties of fired-clay bricks incorporated with biosolids, J. Mater. Civ. Eng, vol.29, p.4017047, 2017.

L. V. Korah, P. M. Nigay, T. Cutard, A. Nzihou, and S. Thomas, The impact of the particle shape of organic additives on the microstructure of a clay ceramic and its thermal and mechanical properties, Constr. Build. Mater, vol.125, pp.654-660, 2016.

, Standard practice for total digestion of sediment samples for chemical analysis of various metals, ASTM International, pp.4698-92, 2013.

, Standard test method for water absorption of plastics, pp.570-598, 2010.

, Standard test methods for apparent porosity, liquid absorption, apparent specific gravity, and bulk density of refractory shapes by vacuum pressure, pp.830-830, 2016.

, Standard test method for measurement of thermal effusivity of fabrics using a modified transient plane source (MTPS) instrument, pp.7984-8000, 2016.

, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, pp.790-800, 2010.

E. Gregorová, Z. ?ivcová, and W. Pabst, Starch as a pore-forming agent and bodyforming agent in ceramic technology, Starch/Stärke, vol.61, issue.9, pp.495-502, 2009.

Z. ?ivcová, E. Gregorová, and W. Pabst, Alumina ceramics prepared with new poreforming agents, Process Appl. Ceram, vol.2, issue.1, pp.1-8, 2008.

S. Freyburg and . Schwarz, Influence of the clay type on the pore structure of structural ceramics, J. Eur. Ceram. Soc, vol.27, pp.1727-1733, 2007.

J. Bourret, N. Tessier-doyen, R. Guinebretiere, E. Joussein, and D. S. Smith, Anisotropy of thermal conductivity and elastic properties of extruded clay-based materials: evolution with thermal treatment, Appl. Clay Sci, pp.150-157, 2015.

R. C. Progelhof, J. L. Throne, and R. R. Ruetsch, Methods for predicting the thermal conductivity of composite systems: a review, Polym. Eng. Sci, vol.16, issue.9, pp.615-625, 1976.

D. S. Smith, A. Alzina, J. Bourret, B. Nait-ali, F. Pennec et al., Thermal conductivity of porous materials, J. Mater. Res, vol.28, pp.2260-2272, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01115971

A. Sugarawa and Y. Yoshizawa, An investigation on the thermal conductivity of porous materials and its application to porous rock, Austr. J. Phys, vol.14, pp.469-480, 1961.

J. Lemaitre, A continuous damage mechanics model for ductile fracture, J. Eng. Mater. Technol, vol.107, pp.83-89, 1985.

J. W. Ju, Isotropic and anisotropic damage variables in continuum damage mechanics, J. Eng. Mech, vol.116, issue.12, pp.2764-2770, 1990.

A. S. Wagh, J. P. Singh, and R. B. Poeppel, Dependence of ceramic fracture properties on porosity, J. Mater. Sci, vol.28, pp.3589-3593, 1993.

I. Yakub, J. Du, and W. O. Soboyejo, Mechanical properties, modeling and design of porous clay ceramics, Mater. Sci. Eng. A, vol.558, pp.21-29, 2012.

P. M. Nigay, T. Cutard, and A. Nzihou, The impact of heat treatment on the microstructure of a clay ceramic and its thermal and mechanical properties, Ceram. Int, vol.43, pp.1747-1754, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619238

V. G. Lee and T. H. Yeh, Sintering effects on the development of mechanical properties of fired clay ceramics, Mater. Sci. Eng. A, vol.485, pp.5-13, 2008.

N. Phonphuak and P. Chindaprasirt, Types of waste, properties, and durability of poreforming waste-based fired masonry bricks, Eco-efficient Masonry Bricks And Blocks: Design, Properties and Durability, pp.103-127, 2014.

L. Aouba, C. Bories, M. Coutand, B. Perrin, and H. Lemercier, Properties of fired clay bricks with incorporated biomasses: cases of olive stone flour and wheat straw residues, Constr. Build. Mater, vol.102, pp.7-13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01849714