]. A. Ghosh, C. H. Hamilton-]-s, V. Semiatin, I. Seetharaman, and . Weiss, Mechanical behavior and hardening characteristics of a superplastic Ti-6AI-4V alloy Hot workability of titanium and titanium aluminide alloys -an overview, Modelisation numerique du formage superplastique de toles, pp.699-706, 1979.

T. Langdon, An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity, MATERIALS TRANSACTIONS, vol.46, issue.9
DOI : 10.2320/matertrans.46.1951

URL : https://www.jstage.jst.go.jp/article/matertrans/46/9/46_9_1951/_pdf

B. Babu, Physically Based Model for Plasticity and Creep of Ti6Al4V, 2008.

K. Kubiak and J. Sieniawski, Development of the microstructure and fatigue strength of two phase titanium alloys in the processes of forging and heat treatment, Dassault Systèmes. [8] Superplastic Forming of Advanced Metallic Materials, pp.117-121, 1998.
DOI : 10.1016/S0924-0136(97)00472-X

M. Vanderhasten, L. Rabet, and B. Verlinden, Ti???6Al???4V: Deformation map and modelisation of tensile behaviour, Materials & Design, vol.29, issue.6, pp.1090-1098, 2008.
DOI : 10.1016/j.matdes.2007.06.005

G. A. Salishchev, S. V. Zherebtsov, S. Malysheva, A. Smyslov, E. Saphin et al., Mechanical Properties of Ti???6Al???4V Titanium Alloy with Submicrocrystalline Structure Produced by Multiaxial Forging, Materials Science Forum, vol.584, issue.586, pp.584-586, 2008.
DOI : 10.4028/www.scientific.net/MSF.584-586.783

URL : http://www.scientific.net/MSF.584-586.783.pdf