H. K. Choi, X. Gao, and G. Curhan, Vitamin C Intake and the Risk of Gout in Men, Archives of Internal Medicine, vol.169, issue.5, pp.502-507, 2009.
DOI : 10.1001/archinternmed.2008.606

D. T. Alexandrescu, C. A. Dasanu, and C. L. Kauffman, Acute scurvy during treatment with interleukin-2, Clinical and Experimental Dermatology, vol.81, issue.7, pp.811-814, 2009.
DOI : 10.1111/j.1365-2230.2008.03052.x

M. H. Alderman, Uric acid and cardiovascular risk, Current Opinion in Pharmacology, vol.2, issue.2, pp.126-130, 2002.
DOI : 10.1016/S1471-4892(02)00143-1

H. A. Jinnah, Lesch-Nyhan disease: from mechanism to model and back again, Disease Models and Mechanisms, vol.2, issue.3-4, pp.116-121, 2009.
DOI : 10.1242/dmm.002543

URL : http://dmm.biologists.org/content/dmm/2/3-4/116.full.pdf

Y. Zhao, X. Yang, W. Lu, H. Liao, and F. Liao, Uricase based methods for determination of uric acid in serum, Microchimica Acta, vol.817, issue.1-2, pp.1-6, 2009.
DOI : 10.1177/000456328402100612

S. A. Wring and J. P. Hart, Chemically modified, carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds. A review, The Analyst, vol.117, issue.8, pp.1215-1229, 1992.
DOI : 10.1039/an9921701215

T. Hepel and J. Osteryoung, Chronoamperometric transients at the stationary disk microelectrode, The Journal of Physical Chemistry, vol.86, issue.8, pp.1406-1411, 1982.
DOI : 10.1021/j100397a038

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA108567&Location=U2&doc=GetTRDoc.pdf

J. O. Howell and R. M. Wightman, Ultrafast voltammetry of anthracene and 9,10-diphenylanthracene, The Journal of Physical Chemistry, vol.88, issue.18, pp.3915-3918, 1984.
DOI : 10.1021/j150662a001

D. Zheng, J. Ye, L. Zhou, Y. Zhang, and C. Yu, Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film, Journal of Electroanalytical Chemistry, vol.625, issue.1, pp.82-87, 2009.
DOI : 10.1016/j.jelechem.2008.10.012

J. Premkumar and S. B. Khoo, Electrocatalytic oxidations of biological molecules (ascorbic acid and uric acids) at highly oxidized electrodes, Journal of Electroanalytical Chemistry, vol.576, issue.1, pp.105-112, 2005.
DOI : 10.1016/j.jelechem.2004.09.030

T. Selvaraju and R. Ramaraj, Simultaneous detection of ascorbic acid, uric acid and homovanillic acid at copper modified electrode, Electrochimica Acta, vol.52, issue.9, pp.2998-3005, 2007.
DOI : 10.1016/j.electacta.2006.09.032

C. Li, Y. Zeng, Y. Liu, and C. Tang, Simultaneous Electrochemical Determination of Uric Acid and Ascorbic Acid on a Glassy Carbon Electrode Modified with Cobalt(II) Tetrakisphenylporphyrin, Analytical Sciences, vol.22, issue.3, pp.393-397, 2006.
DOI : 10.2116/analsci.22.393

S. Sharokhian and H. R. Zare-mehrjardi, Simultaneous Voltammetric Determination of Uric Acid and Ascorbic Acid Using a Carbon-Paste Electrode Modified with Multi-Walled Carbon Nanotubes/Nafion and Cobalt(II)nitrosalophen, Electroanalysis, vol.126, issue.21, pp.2234-2242, 2007.
DOI : 10.1016/S0022-0728(78)80103-X

H. M. Nassef, A. Radi, and C. O. Sullivan, Simultaneous detection of ascorbate and uric acid using a selectively catalytic surface, Analytica Chimica Acta, vol.583, issue.1, pp.182-189, 2007.
DOI : 10.1016/j.aca.2006.10.004

D. Sun, Y. Zhang, F. Wang, K. Wu, J. Chen et al., Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica, Sensors and Actuators B: Chemical, vol.141, issue.2, pp.641-645, 2009.
DOI : 10.1016/j.snb.2009.07.043

S. Zhu, H. Li, W. Niu, and G. Xu, Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode, Biosensors and Bioelectronics, vol.25, issue.4, pp.940-943, 2009.
DOI : 10.1016/j.bios.2009.08.022

S. Zhang, M. Xu, and Y. Zhang, Simultaneous Voltammetric Detection of Salsolinol and Uric Acid in the Presence of High Concentration of Ascorbic Acid with Gold Nanoparticles/Functionalized Multiwalled Carbon Nanotubes Composite Film Modified Electrode, Electroanalysis, vol.44, issue.23, pp.2607-2610, 2009.
DOI : 10.1016/j.aca.2007.08.052

H. Jeong and S. Jeon, Determination of Dopamine in the Presence of Ascorbic Acid by Nafion and Single-Walled Carbon Nanotube Film Modified on Carbon Fiber Microelectrode, Sensors, vol.66, issue.11, pp.6924-6935, 2008.
DOI : 10.1016/j.talanta.2004.09.019

Y. Li and X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode, Sensors and Actuators B: Chemical, vol.115, issue.1, pp.134-139, 2006.
DOI : 10.1016/j.snb.2005.08.022

S. A. Kumar, H. Cheng, and S. Chen, Selective Detection of Uric Acid in the Presence of Ascorbic Acid and Dopamine Using Polymerized Luminol Film Modified Glassy Carbon Electrode, Electroanalysis, vol.380, issue.20, pp.2281-2286, 2009.
DOI : 10.1002/elan.200904677

M. Zhang, K. Liu, L. Xiang, Y. Lin, L. Su et al., Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain, Analytical Chemistry, vol.79, issue.17, pp.6559-6565, 2007.
DOI : 10.1021/ac0705871

S. Shahrokhian and M. Ghalkhani, Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine???nafion ion-pair as an electron mediator, Electrochimica Acta, vol.51, issue.13, pp.2599-2606, 2006.
DOI : 10.1016/j.electacta.2005.08.001

A. A. Ensafi, M. Taei, and T. Khayamian, A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode, Journal of Electroanalytical Chemistry, vol.633, issue.1, pp.212-220, 2009.
DOI : 10.1016/j.jelechem.2009.06.001

P. Kalimuthu and S. A. John, Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode, Analytica Chimica Acta, vol.647, issue.1, pp.97-103, 2009.
DOI : 10.1016/j.aca.2009.05.036

M. Y. Wang, X. Y. Xu, F. Yang, S. Y. Zhang, and X. J. Yang, Development of an amperometric sensor for simultaneous determination of uric acid and ascorbic acid using 2-[bis(2-aminoethyl)amino]ethanol, 4,4???-bipyridine bridged dicopper(II) complex, Journal of Applied Electrochemistry, vol.51, issue.9, pp.1269-1274, 2008.
DOI : 10.1007/s10800-008-9552-0

X. Zhu and X. Lin, Eletropolymerization of Niacinamide for Fabrication of Electrochemical Sensor: Simultaneous Determination of Dopamine, Uric Acid and Ascorbic Acid, Chinese Journal of Chemistry, vol.13, issue.6, pp.1103-1109, 2009.
DOI : 10.1002/cjoc.200990184

J. He, G. Jin, Q. Chen, and Y. Wang, A quercetin-modified biosensor for amperometric determination of uric acid in the presence of ascorbic acid, Analytica Chimica Acta, vol.585, issue.2, pp.337-343, 2007.
DOI : 10.1016/j.aca.2007.01.004

J. Roncali, Conjugated poly(thiophenes): synthesis, functionalization, and applications, Chemical Reviews, vol.92, issue.4, pp.711-738, 1992.
DOI : 10.1021/cr00012a009

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future, Advanced Materials, vol.12, issue.7, pp.481-494, 2000.
DOI : 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

L. Groenendaal, G. Zotti, P. Aubert, S. M. Waybright, and J. R. Reynolds, Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives, Advanced Materials, vol.15, issue.11, pp.855-879, 2003.
DOI : 10.1002/adma.200300376

N. K. Guimard, N. Gomez, and C. E. Schmidt, Conducting polymers in biomedical engineering, Progress in Polymer Science, vol.32, issue.8-9, pp.876-921, 2007.
DOI : 10.1016/j.progpolymsci.2007.05.012

A. Balamurugan and S. Chen, Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid, Analytica Chimica Acta, vol.596, issue.1, pp.92-98, 2007.
DOI : 10.1016/j.aca.2007.05.064

V. S. Vasantha and S. Chen, Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes, Journal of Electroanalytical Chemistry, vol.592, issue.1, pp.77-87, 2006.
DOI : 10.1016/j.jelechem.2006.04.026

V. S. Vasantha and S. Chen, Synergistic effect of a catechin-immobilized poly(3,4-ethylenedioxythiophene)-modified electrode on electrocatalysis of NADH in the presence of ascorbic acid and uric acid, Electrochimica Acta, vol.52, issue.2, pp.665-674, 2006.
DOI : 10.1016/j.electacta.2006.05.052

S. Lupu, A. Mucci, L. Pigani, R. Seeber, and C. Zanardi, Polythiophene Derivative Conducting Polymer Modified Electrodes and Microelectrodes for Determination of Ascorbic Acid. Effect of Possible Interferents, Electroanalysis, vol.14, issue.7-8, pp.519-525, 2002.
DOI : 10.1002/1521-4109(200204)14:7/8<519::AID-ELAN519>3.0.CO;2-G

S. Patra, K. Barai, and N. Munichandraiah, Scanning electron microscopy studies of PEDOT prepared by various electrochemical routes, Synthetic Metals, vol.158, issue.10, pp.430-435, 2008.
DOI : 10.1016/j.synthmet.2008.03.002

M. C. Morvant and J. R. Reynolds, In situ conductivity studies of poly(3,4-ethylenedioxythiophene), Synthetic Metals, vol.92, issue.1, pp.57-61, 1998.
DOI : 10.1016/S0379-6779(98)80023-4

L. Niu, C. Kvarnström, K. Fröberg, and A. Ivaska, Electrochemically controlled surface morphology and crystallinity in poly(3,4-ethylenedioxythiophene) films, Synthetic Metals, vol.122, issue.2, pp.425-429, 2001.
DOI : 10.1016/S0379-6779(00)00562-2

A. I. Melato, M. H. Mendonça, and L. M. Abrantes, Effect of the electropolymerisation conditions on the electrochemical, morphological and structural properties of PEDOTh films, Journal of Solid State Electrochemistry, vol.359, issue.43, pp.417-426, 2009.
DOI : 10.1007/s10008-008-0522-6

H. Randriamahazaka, V. Noël, and C. Chevrot, Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostatic conditions, Journal of Electroanalytical Chemistry, vol.472, issue.2, pp.103-111, 1999.
DOI : 10.1016/S0022-0728(99)00258-2

T. Darmanin, M. Nicolas, and F. Guittard, Electrodeposited polymer films with both superhydrophobicity and superoleophilicity, Physical Chemistry Chemical Physics, vol.67, issue.29, pp.4322-4326, 2008.
DOI : 10.1007/s007060170142

E. Tamburri, S. Orlanducci, F. Toschi, M. L. Terranova, and D. Passeri, Growth mechanisms, morphology, and electroactivity of PEDOT layers produced by electrochemical routes in aqueous medium, Synthetic Metals, vol.159, issue.5-6, pp.406-414, 2009.
DOI : 10.1016/j.synthmet.2008.10.014

A. Bello, M. Gianneto, G. Mori, R. Seeber, F. Terzi et al., Optimization of the DPV potential waveform for determination of ascorbic acid on PEDOT-modified electrodes, Sensors and Actuators B: Chemical, vol.121, issue.2, pp.430-435, 2007.
DOI : 10.1016/j.snb.2006.04.066

A. J. Downard and D. Pletcher, A study of the conditions for the electrodeposition of polythiophen in acetonitrile, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.206, issue.1-2, pp.147-152, 1986.
DOI : 10.1016/0022-0728(86)90264-0

M. E. Lyons, Charge Percollation in Electroactive Polymers, Electroactive Polymer Electrochemistry Part I, pp.65-116, 1994.

G. Schöpf and G. , Electrically Conductive Polymers, p.80, 1997.

A. J. Bard and L. R. Faulkner, Electrochimie : principes, méthodes et applications, p.486, 1983.

C. Jacob, G. I. Giles, N. M. Giles, and H. Sies, Sulfur and Selenium: The Role of Oxidation State in Protein Structure and Function, Angewandte Chemie International Edition, vol.42, issue.39, pp.4742-4758, 2003.
DOI : 10.1002/anie.200300573