GLINT: Gravitational-wave laser INterferometry triangle - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue Exper.Astron. Année : 2017

GLINT: Gravitational-wave laser INterferometry triangle

Shafa Aria
  • Fonction : Auteur
Rui Azevedo
  • Fonction : Auteur
Rick Burow
  • Fonction : Auteur
Fiachra Cahill
  • Fonction : Auteur
Lada Ducheckova
  • Fonction : Auteur
Alexa Holroyd
  • Fonction : Auteur
Victor Huarcaya
  • Fonction : Auteur
Emilia Järvelä
  • Fonction : Auteur
Martin Kossagk
  • Fonction : Auteur
Chris Moeckel
  • Fonction : Auteur
Ana Rodriguez
  • Fonction : Auteur
Richard Sypniewski
  • Fonction : Auteur
Edoardo Vittori
  • Fonction : Auteur
Madeleine Yttergren
  • Fonction : Auteur

Résumé

When the universe was roughly one billion years old, supermassive black holes (10$^{3}$-10$^{6}$ solar masses) already existed. The occurrence of supermassive black holes on such short time scales are poorly understood in terms of their physical or evolutionary processes. Our current understanding is limited by the lack of observational data due the limits of electromagnetic radiation. Gravitational waves as predicted by the theory of general relativity have provided us with the means to probe deeper into the history of the universe. During the ESA Alpach Summer School of 2015, a group of science and engineering students devised GLINT (Gravitational-wave Laser INterferometry Triangle), a space mission concept capable of measuring gravitational waves emitted by black holes that have formed at the early periods after the big bang. Morespecifically at redshifts of 15 < z < 30(∼ 0.1 − 0.3× 10$^{9}$ years after the big bang) in the frequency range 0.01 − 1 Hz. GLINT design strain sensitivity of $5\times 10^{-24}\,1/\sqrt {\text {Hz}}$ will theoretically allow the study of early black holes formations as well as merging events and collapses. The laser interferometry, the technology used for measuring gravitational waves, monitors the separation of test masses in free-fall, where a change of separation indicates the passage of a gravitational wave. The test masses will be shielded from disturbing forces in a constellation of three geocentric orbiting satellites.

Dates et versions

hal-01703731 , version 1 (08-02-2018)

Identifiants

Citer

Shafa Aria, Rui Azevedo, Rick Burow, Fiachra Cahill, Lada Ducheckova, et al.. GLINT: Gravitational-wave laser INterferometry triangle. Exper.Astron., 2017, 44 (2), pp.181-208. ⟨10.1007/s10686-017-9558-x⟩. ⟨hal-01703731⟩
132 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More