Surface self-diffusion of silicon during high temperature annealing - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue Journal of Applied Physics Année : 2014

Surface self-diffusion of silicon during high temperature annealing

Résumé

The atomic-scale mechanisms driving thermally activated self-diffusion on silicon surfaces are investigated by atomic force microscopy. The evolution of surface topography is quantified over a large spatial bandwidth by means of the Power Spectral Density functions. We propose a parametric model, based on the Mullins-Herring (M-H) diffusion equation, to describe the evolution of the surface topography of silicon during thermal annealing. Usually, a stochastic term is introduced into the M-H model in order to describe intrinsic random fluctuations of the system. In this work, we add two stochastic terms describing the surface thermal fluctuations and the oxidation-evaporation phenomenon. Using this extended model, surface evolution during thermal annealing in reducing atmosphere can be predicted for temperatures above the roughening transition. A very good agreement between experimental and theoretical data describing roughness evolution and self-diffusion phenomenon is obtained. The physical origin and time-evolution of these stochastic terms are discussed. Finally, using this model, we explore the limitations of the smoothening of the silicon surfaces by rapid thermal annealing. © 2014 AIP Publishing LLC.
Fichier principal
Vignette du fichier
1.4870476.pdf (8.38 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01719499 , version 1 (28-02-2018)

Identifiants

Citer

Pablo E. Acosta-Alba, Oleg Kononchuk, Christophe Gourdel, Alain Claverie. Surface self-diffusion of silicon during high temperature annealing. Journal of Applied Physics, 2014, 115 (13), pp.134903 - 333. ⟨10.1063/1.4870476⟩. ⟨hal-01719499⟩
71 Consultations
631 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More