Manipulation of 2D arrays of Si nanocrystals by ultra-low-energy ion beam-synthesis for nonvolatile memories applications - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Communication Dans Un Congrès Année : 2005

Manipulation of 2D arrays of Si nanocrystals by ultra-low-energy ion beam-synthesis for nonvolatile memories applications

Résumé

In silicon nanocrystal (nc) based metal-oxide-semiconductor (MOS) memory structures a fine control of the Si nc location in the gate oxide is required for the pinpointing of optimal device architectures. In this work, we show how to manipulate and control the depth-position, size and surface density of two dimensional (2D) arrays of Si ncs embedded in thin (<10 nm) SiO2 layers, fabricated by ultra-low-energy (typically 1 keV) ion implantation and subsequent annealing. Particular emphasis is placed upon the influence of implantation, annealing conditions and oxide thickness on the nanocrystal characteristics (e.g. size, density) and the charge storage properties of associated MOS structures. Structural investigation is performed by using specific characterization methods including Fresnel imaging for the measurement of the injection distance between the substrate and the nc band, as well as spatially resolved Electron Energy Loss Spectroscopy using the spectrum-imaging mode of a Scanning Transmission Electron Microscope to evaluate the size distribution and density of the ncs.
Fichier non déposé

Dates et versions

hal-01736091 , version 1 (16-03-2018)

Identifiants

Citer

Caroline Bonafos, Nikolay Cherkashin, Marzia Carrada, H. Coffin, Gérard Benassayag, et al.. Manipulation of 2D arrays of Si nanocrystals by ultra-low-energy ion beam-synthesis for nonvolatile memories applications. Symposium D – Materials and Processes for Nonvolatile Memories, 2005, indéterminée, Unknown Region. pp.217-222, ⟨10.1557/PROC-830-D5.2⟩. ⟨hal-01736091⟩
50 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More