D. W. Thompson, A. Ito, and T. J. Meyer, Ru(bpy) 3 ] 2+ * and Other Remarkable Metal-to-Ligand Charge Transfer (MLCT) Excited States, Pure Appl. Chem, vol.85, pp.1257-1305, 2013.

R. Englman and J. Jortner, The Energy Gap Law for Radiationless Transitions in Large Molecules, Mol. Phys, vol.18, pp.145-164, 1970.

A. J. G?ttle, I. M. Dixon, F. Alary, J. Heully, and M. Boggio-pasqua, Adiabatic Versus Nonadiabatic Photoisomerization in Photochromic Ruthenium Sulfoxide Complexes: A Mechanistic Picture from Density Functional Theory Calculations, J. Am. Chem. Soc, vol.133, pp.9172-9174, 2011.

I. M. Dixon, J. Heully, F. Alary, and P. I. Elliott, Theoretical Illumination of Highly Original Photoreactive 3 MC States and the Mechanism of the Photochemistry of Ru(II) Tris(bidentate) Complexes, Phys Chem Chem Phys, vol.19, pp.27765-27778, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622130

L. Feng, Y. Wang, and J. Jia, Triplet Ground-State-Bridged Photochemical Process: Understanding the Photoinduced Chiral Inversion at the Metal Center of, + and Its Bipy Analogues, vol.56, pp.14467-14476, 2017.

J. Van-houten and R. J. Watts, Temperature Dependence of the Photophysical and Photochemical Properties of the tris(2,2'-bipyridyl) Ruthenium(II) Ion in Aqueous Solution, J. Am. Chem. Soc, vol.98, pp.4853-4858, 1976.

B. Durham, J. V. Caspar, J. K. Nagle, T. J. Meyer, . Photochemistry et al., , p.3

. 2+, J. Am. Chem. Soc, vol.104, pp.4803-4810, 1982.

P. E. Hoggard and G. B. Porter, Photoanation of the tris(2,2'-bipyridine) Ruthenium(II) Cation by Thiocyanate, J. Am. Chem. Soc, vol.100, pp.1457-1463, 1978.

D. W. Thompson, J. F. Wishart, B. S. Brunschwig, and N. Sutin, Efficient Generation of the Ligand Field Excited State of Tris-(2,2'-bipyridine)-ruthenium(II) through Sequential Two-Photon Capture by, J. Phys. Chem. A, vol.105, pp.8117-8122, 2001.

M. Gleria, F. Minto, G. Beggiato, and P. Bortolus, Photochemistry of Tris(2,2'-bipyridine)ruthenium(II) in Chlorinated Solvents, J. Chem. Soc. Chem. Commun, p.285, 1978.

J. Van-houten and R. J. Watts, Photochemistry of tris(2,2'-bipyridyl) Ruthenium(II) in Aqueous Solutions, Inorg. Chem, vol.17, pp.3381-3385, 1978.

Q. Sun, S. Mosquera-vazquez, L. M. Lawson-daku, L. Guénée, H. A. Goodwin et al., Experimental Evidence of Ultrafast Quenching of the 3 MLCT Luminescence in Ruthenium(II) Tris-Bipyridyl Complexes via a 3 dd State, J. Am. Chem. Soc, vol.135, pp.13660-13663, 2013.

A. Cadranel, G. E. Pieslinger, P. Tongying, M. K. Kuno, L. M. Baraldo et al., Spectroscopic Signatures of Ligand Field States in {Ru II (imine)} Complexes, vol.45, pp.5464-5475, 2016.

T. Mukuta, N. Fukazawa, K. Murata, A. Inagaki, M. Akita et al., Infrared Vibrational Spectroscopy of, Inorg. Chem, vol.53, pp.2481-2490, 2014.

T. Mukuta, S. Tanaka, A. Inagaki, S. Koshihara, and K. Onda, Direct Observation of the Triplet Metal-Centered State in [Ru(bpy) 3 ] 2+ Using Time-Resolved Infrared Spectroscopy, vol.1, pp.2802-2807, 2016.

Q. Sun, B. Dereka, E. Vauthey, L. M. Lawson-daku, and A. Hauser, Ultrafast Transient IR Spectroscopy and DFT Calculations of Ruthenium(II) Polypyridyl Complexes, Chem Sci, vol.8, pp.223-230, 2017.

B. Durham, J. L. Walsh, C. L. Carter, and T. J. Meyer, Synthetic Applications of Photosubstitution Reactions of Poly(pyridyl) Complexes of Ruthenium(II), Inorg. Chem, vol.19, pp.860-865, 1980.

L. G. Va-nquickenborne and A. Ceulemans, Ligand-Field Models and the Photochemistry of Coordination Compounds

, Coord. Chem. Rev, vol.48, pp.157-202, 1983.

A. Soupart, I. M. Dixon, F. Alary, and J. Heully, DFT Rationalization of the Room Temperature Luminescence Properties of Ru(bpy) 3 2+ and Ru(tpy) 2 2+ : 3 MLCT-3 MC Minimum Energy Path from NEB Calculations and Emission Spectra from VRES Calculations, Theor. Chem. Acc. Accept
URL : https://hal.archives-ouvertes.fr/hal-01741478

A. J. G?ttle, F. Alary, I. M. Dixon, J. Heully, and M. Boggio-pasqua, Unravelling the S ? O Linkage Photoisomerization Mechanisms in Cis-and Trans-[Ru(bpy) 2 (DMSO) 2 ] 2+ Using Density Functional Theory, Inorg. Chem, vol.53, pp.6752-6760, 2014.

A. J. G?ttle, F. Alary, M. Boggio-pasqua, I. M. Dixon, J. Heully et al., Pivotal Role of a Pentacoordinate 3 MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study, Inorg. Chem, vol.55, pp.4448-4456, 2016.

S. E. Greenough, G. M. Roberts, N. A. Smith, M. D. Horbury, R. G. Mckinlay et al., Ultrafast Photo-Induced Ligand Solvolysis of Cis-[Ru(bipyridine) 2 (nicotinamide) 2 ] 2+ : Experimental and Theoretical Insight into Its Photoactivation Mechanism, Phys Chem Chem Phys, vol.16, pp.19141-19155, 2014.

L. Ding, L. W. Chung, and K. Morokuma, Excited-State Proton Transfer Controls Irreversibility of Photoisomerization in Mononuclear Ruthenium(II) Monoaquo Complexes: A DFT Study, J. Chem. Theory Comput, vol.10, pp.668-675, 2014.

M. R. Camilo, C. R. Cardoso, R. M. Carlos, and A. B. Lever, Photosolvolysis of Cis-[Ru(?-diimine) 2 (4-aminopyridine) 2 ] 2+ Complexes: Photophysical, Spectroscopic, and Density Functional Theory Analysis, Inorg. Chem, vol.53, pp.3694-3708, 2014.

M. Hirahara and M. Yagi, Photoisomerization of Ruthenium(II) Aquo Complexes: Mechanistic Insights and Application Development, Dalton Trans, vol.46, pp.3787-3799, 2017.

Y. Tu, S. Mazumder, J. F. Endicott, C. Turro, J. J. Kodanko et al., Selective Photodissociation of

, Acetonitrile Ligands in Ruthenium Polypyridyl Complexes Studied by Density Functional Theory, Inorg. Chem, vol.54, pp.8003-8011, 2015.

K. Arora, J. K. White, R. Sharma, S. Mazumder, P. D. Martin et al., Effects of Methyl Substitution in Ruthenium Tris(2-Pyridylmethyl)amine Photocaging Groups for Nitriles, Inorg. Chem, vol.55, pp.6968-6979, 2016.

K. Nisbett, Y. Tu, C. Turro, J. J. Kodanko, and H. B. Schlegel, DFT Investigation of Ligand Photodissociation in, Inorg. Chem, vol.57, pp.231-240, 2018.

L. Salassa, C. Garino, G. Salassa, R. Gobetto, and C. Nervi, Mechanism of Ligand Photodissociation in Photoactivable [Ru(bpy) 2 L 2 ] 2+ Complexes: A Density Functional Theory Study, J. Am. Chem. Soc, vol.130, pp.9590-9597, 2008.

L. Salassa, C. Garino, G. Salassa, C. Nervi, R. Gobetto et al., Ligand-Selective Photodissociation from [Ru(bpy)(4AP) 4 ] 2+ : A Spectroscopic and Computational Study, Inorg. Chem, vol.48, pp.1469-1481, 2009.

E. Borfecchia, C. Garino, D. Gianolio, L. Salassa, R. Gobetto et al., Monitoring Excited State Dynamics in Cis-[Ru(bpy) 2 (py) 2 ] 2+ by Ultrafast Synchrotron Techniques, Catal. Today, vol.229, pp.34-45, 2014.

A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.113, issue.33, pp.73-78, 2009.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev. B, vol.37, pp.785-789, 1988.

A. D. Becke, A New Mixing of Hartree-Fock and Local Density-Functional Theories, J. Chem. Phys, vol.98, pp.1372-1377, 1993.

D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements, Theor. Chim. Acta, vol.77, pp.123-141, 1990.

F. Weigend and R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy, Phys. Chem. Chem. Phys, vol.7, pp.3297-3305, 2005.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, J. Chem. Phys, vol.2010, issue.15, p.154104

S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the Damping Function in Dispersion Corrected Density Functional Theory, J. Comput. Chem, vol.32, pp.1456-1465, 2011.

A. Allouche, Gabedit-A Graphical User Interface for Computational Chemistry Softwares, J. Comput. Chem, vol.32, pp.174-182, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01674005

H. Jonsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions, Classical and Quantum Dynamics in Condensed Phase Simulations

B. J. Berne, G. Cicotti, and D. F. Coker, , pp.385-404, 1998.

G. Henkelman, G. Jóhannesson, and H. Jónsson, Methods for Finding Saddle Points and Minimum Energy Paths, Theoretical Methods in Condensed Phase Chemistry

S. D. Schwartz and . Ed, , pp.269-300, 2000.

H. C. Herbol, J. Stevenson, and P. Clancy, Computational Implementation of Nudged Elastic Band, Rigid Rotation, and Corresponding Force Optimization, J. Chem. Theory Comput, vol.13, pp.3250-3259, 2017.

S. Smidstrup, A. Pedersen, K. Stokbro, and H. Jónsson, Improved Initial Guess for Minimum Energy Path Calculations, J. Chem. Phys, p.214106, 2014.

F. Alary, J. Heully, L. Bijeire, and P. Vicendo, Is the 3 MLCT the Only Photoreactive State of Polypyridyl Complexes?, Inorg. Chem, vol.46, pp.3154-3165, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00941075

J. Heully, F. Alary, and M. Boggio-pasqua, Spin-Orbit Effects on the Photophysical Properties of Ru(bpy) 3 2+, J. Chem. Phys, p.184308, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00834703

D. Liotard and J. Penot, Critical Paths and Passes: Application to Quantum Chemistry, Numerical methods in the study of critical phenomena

J. Della-dora, J. Demongeot, and B. Lacolle, , pp.213-221, 1981.

D. A. Liotard, Algorithmic Tools in the Study of Semiempirical Potential Surfaces, Int. J. Quantum Chem, vol.44, pp.723-741, 1992.