Silicon nanoparticles synthesized in SiO2 pockets by stencil-masked low energy ion implantation and thermal annealing - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue Superlattices and Microstructures Année : 2008

Silicon nanoparticles synthesized in SiO2 pockets by stencil-masked low energy ion implantation and thermal annealing

Résumé

We propose an original approach called a “stencil-masked ion implantation process” for performing a spatially localized synthesis of a limited number of Si nanocrystals within a thin SiO2 layer. In this process, the SiO2 layer is irradiated with 1 keV silicon ions through a stencil mask containing apertures (from 100 nm to 2 μm), and subsequently thermally annealed to create Si nanocrystals. Scanning electron microscopy images show that the implanted areas mimic the mask geometry. Energy-filtered transmission electron microscopy and photoluminescence spectroscopy studies confirm that only the implanted areas are Si nanocrystal rich and light emitting. The smaller nanocrystal size detected near the edges of the implanted areas is attributed to dose reduction effects. This feature leads to a blueshift of the PL energy. Electrical properties of the structures produced are investigated using Al gate MOS capacitors. Room temperature and characteristics exhibit discrete current peaks that are associated with single-electron charging of the nanocrystals and electrostatic interaction of the trapped charges with the tunnelling current.

Dates et versions

hal-01745035 , version 1 (27-03-2018)

Identifiants

Citer

Jérémie Grisolia, C. Dumas, Gérard Benassayag, Caroline Bonafos, Sylvie Schamm-Chardon, et al.. Silicon nanoparticles synthesized in SiO2 pockets by stencil-masked low energy ion implantation and thermal annealing. Superlattices and Microstructures, 2008, 44 (4-5), pp.395-401. ⟨10.1016/j.spmi.2007.12.013⟩. ⟨hal-01745035⟩
54 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More