D. M. Rowe, CRC Handbook of Thermoelectrics, 1995.
DOI : 10.1201/9781420049718

H. Alam and S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials, Nano Energy, vol.2, issue.2, pp.190-212, 2013.
DOI : 10.1016/j.nanoen.2012.10.005

J. Martin, T. Tritt, and C. Uher, High temperature Seebeck coefficient metrology, Journal of Applied Physics, vol.16, issue.12, p.121101, 2010.
DOI : 10.6028/jres.114.004

D. K. Aswal, R. Basu, and A. Singh, Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects, Energy Conversion and Management, vol.114
DOI : 10.1016/j.enconman.2016.01.065

Z. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Nanostructured thermoelectric materials: Current research and future challenge, Progress in Natural Science: Materials International, vol.22, issue.6, pp.535-549, 2012.
DOI : 10.1016/j.pnsc.2012.11.011

URL : https://doi.org/10.1016/j.pnsc.2012.11.011

D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, Thermal conductivity of thin films: Measurements and understanding, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, pp.1259-1266, 1989.
DOI : 10.1116/1.576265

J. Cuffe and F. Montemor, Nanostructured p-type Cr/V 2 O 5 thin films with boosted thermoelectric properties, J. Mater. Chem. A 2014 Coonley, K, vol.2, pp.6456-6462

M. Mantini, Nanostructured Superlattice Thin-Film Thermoelectric Devices In Nanotechnology and the Environment, ACS Symposium Series, pp.347-352, 2004.

F. A. Benko and F. P. Koffyberg, Preparation and opto-electronic properties of semiconducting CuCrO2, Materials Research Bulletin, vol.21, issue.6, pp.753-757, 1986.
DOI : 10.1016/0025-5408(86)90156-X

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, and H. Yanagi, P-type electrical conduction in transparent thin films of CuAlO2, Nature, vol.81, issue.6654, pp.939-942, 1997.
DOI : 10.1016/0167-2738(95)00169-7

R. Nagarajan, N. Duan, M. K. Jayaraj, J. Li, K. A. Vanaja et al., p-Type conductivity in the delafossite structure, Sleight, A.W. p-Type conductivity in the delafossite structure, pp.265-270, 2001.
DOI : 10.1016/S1466-6049(01)00006-X

H. Yanagi, T. Hase, S. Ibuki, K. Ueda, and H. Hosono, Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure, Applied Physics Letters, vol.78, issue.11, pp.1583-1585, 2001.
DOI : 10.1006/jssc.1999.8603

A. N. Banerjee and K. K. Chattopadhyay, Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films, Progress in Crystal Growth and Characterization of Materials, vol.50, issue.1-3, pp.52-105, 2005.
DOI : 10.1016/j.pcrysgrow.2005.10.001

A. Stadler, Transparent Conducting Oxides???An Up-To-Date Overview, Materials, vol.20, issue.12, pp.661-683
DOI : 10.1557/PROC-1165-M06-08

A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, and P. Tailhades, thin films prepared by RF-sputtering, Journal of Materials Chemistry C, vol.74, issue.3, pp.6012-6024, 2015.
DOI : 10.1103/PhysRevB.74.184301

K. H. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, -type transparent conducting oxides, Journal of Physics: Condensed Matter, vol.28, issue.38, p.383002, 2016.
DOI : 10.1088/0953-8984/28/38/383002

P. Barquinha, R. Martins, L. Pereira, and E. Fortunato, Transparent Oxide Electronics: From Materials to Devices, 2008.
DOI : 10.1002/9781119966999

J. F. Wager, D. A. Kesler, and D. A. Presley, Transparent Electronics, 2008.

K. Tonooka and N. Kikuchi, Preparation of transparent CuCrO 2 : Mg/ZnO p-n junctions by pulsed laser deposition. Thin Solid Films, pp.2415-2418, 2006.

H. Hosono, H. Ota, K. Kawamura, N. Sarukura, and M. Hirano, Light-Emitting Diode and Laser Diode Having N-Type ZnO Layer and P-Type Semiconductor Laser, U.S. Patent, vol.6806, p.503, 2004.

H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano et al., Fabrication of all oxide transparent p???n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure, Solid State Communications, vol.121, issue.1, pp.15-18, 2002.
DOI : 10.1016/S0038-1098(01)00439-2

B. Ling, J. L. Zhao, X. W. Sun, S. T. Tan, A. K. Kyaw et al., Color tunable light-emitting diodes based on p+-Si/p-CuAlO 2 /n-ZnO nanorod array heterojunctions, Appl. Phys. Lett, pp.97-13101, 2010.

T. W. Chiu, K. Tonooka, and N. Kikuchi, Fabrication of ZnO and CuCrO2:Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes, Thin Solid Films, vol.516, issue.18, pp.5941-5947, 2008.
DOI : 10.1016/j.tsf.2007.10.067

J. Tate, M. K. Jayaraj, A. D. Draeseke, T. Ulbrich, A. W. Sleight et al., p-Type oxides for use in transparent diodes, Thin Solid Films, vol.411, issue.1, pp.119-124, 2002.
DOI : 10.1016/S0040-6090(02)00199-2

A. Renaud, L. Cario, P. Deniard, E. Gautron, X. Rocquefelte et al., Based p-Type Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, vol.118, issue.1, pp.54-59, 2014.
DOI : 10.1021/jp407233k

URL : https://hal.archives-ouvertes.fr/hal-00988063

M. Asemi and M. Ghanaatshoar, Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2, Journal of Materials Science, vol.131, issue.1, pp.489-503, 2017.
DOI : 10.1021/ja8095575

T. Zhu, Z. Deng, X. Fang, Z. Huo, S. Wang et al., High photovoltages of CuFeO 2 based p-type dye-sensitized solar cells, Journal of Alloys and Compounds, vol.685, pp.836-840, 2016.
DOI : 10.1016/j.jallcom.2016.06.231

S. Jobic, Copper borate as a photocathode in p-type dye-sensitized solar cells, RSC Adv. 2016, vol.6, pp.1549-1553
URL : https://hal.archives-ouvertes.fr/hal-01723647

K. Toyoda, R. Hinogami, N. Miyata, and M. Aizawa, Calculated Descriptors of Catalytic Activity for Water Electrolysis Anode: Application to Delafossite Oxides, The Journal of Physical Chemistry C, vol.119, issue.12, pp.6495-6501, 2015.
DOI : 10.1021/jp5092398

P. F. Carcia, R. D. Shannon, P. E. Bierstedt, and R. B. Flippen, Oxygen electrocatalysis on Thin Film Metallic Oxide Electrodes with the Delafossite Structure, J. Electrochem. Soc, vol.127, 1974.

H. Dong, Z. Li, X. Xu, Z. Ding, L. Wu et al., Visible light-induced photocatalytic activity of delafossite AgMO2 (M=Al, Ga, In) prepared via a hydrothermal method, Applied Catalysis B: Environmental, vol.89, issue.3-4, pp.551-556, 2009.
DOI : 10.1016/j.apcatb.2009.01.018

W. Ketir, G. Rekhila, and M. Trari, Preparation, characterization and application of CuCrO2/ZnO photocatalysts for the reduction of Cr(VI), Journal of Environmental Sciences, vol.24, issue.12, pp.2173-2179, 2012.
DOI : 10.1016/S1001-0742(11)61043-7

URL : https://hal.archives-ouvertes.fr/hal-00872196

S. Saadi, A. Bouguelia, and M. Trari, Photocatalytic hydrogen evolution over CuCrO2, Solar Energy, vol.80, issue.3, pp.272-280, 2006.
DOI : 10.1016/j.solener.2005.02.018

R. Rao, A. Dandekar, R. T. Baker, and M. A. Vannice, Properties of Copper Chromite Catalysts in Hydrogenation Reactions, Journal of Catalysis, vol.171, issue.2, pp.406-419, 1997.
DOI : 10.1006/jcat.1997.1832

N. Koriche, A. Bouguelia, A. Aider, and M. Trari, Photocatalytic hydrogen evolution over delafossite, International Journal of Hydrogen Energy, vol.30, issue.7, pp.693-699, 2005.
DOI : 10.1016/j.ijhydene.2004.06.011

W. Ketir, A. Bouguelia, and M. Trari, Visible Light Induced NO2 ??? Removal Over CuCrO2 Catalyst, Water, Air, and Soil Pollution, vol.78, issue.5???6, pp.115-122, 2009.
DOI : 10.1016/j.crci.2005.02.041

P. Zhang, Y. Shi, M. Chi, J. N. Park, G. D. Stucky et al., : synthesis and catalysis, Nanotechnology, vol.24, issue.34, p.345704, 2013.
DOI : 10.1088/0957-4484/24/34/345704

Y. J. Jang, Y. B. Park, H. E. Kim, Y. H. Choi, S. H. Choi et al., Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production, Chemistry of Materials, vol.28, issue.17, pp.6054-6061, 2016.
DOI : 10.1021/acs.chemmater.6b00460

J. W. Lekse, M. K. Underwood, J. P. Lewis, and C. Matranga, ) Delafossites, Electronic Structure, and Photocatalytic Behavior of CuGaO 2 and CuGa 1?x Fe x O 2

T. W. Chiu, Y. C. Yang, A. C. Yeh, Y. P. Wang, and Y. W. Feng, Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition, Vacuum, vol.87, pp.174-177, 2013.
DOI : 10.1016/j.vacuum.2012.04.026

J. Patzsch, I. Balog, P. Krauß, C. W. Lehmann, and J. J. Schneider, Synthesis, characterization and p?n type gas sensing behaviour of CuFeO 2 delafossite type inorganic wires using Fe and Cu complexes as single source molecular precursors, 2014.

E. Elgazzar, ?. Tataro, A. Glu, A. A. Ghamdi, Y. Turki et al., Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements, Applied Physics A, vol.7, issue.6, p.617
DOI : 10.1063/1.1754385

X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Liu, and C. N. Xu, Room temperature sensing of ozone by transparent p-type semiconductor CuAlO2, Applied Physics Letters, vol.85, issue.10, pp.1728-1729, 2004.
DOI : 10.1063/1.127015

S. Zhou, X. Fang, Z. Deng, D. Li, W. Dong et al., Room temperature ozone sensing properties of p-type CuCrO2 nanocrystals, Sensors and Actuators B: Chemical, vol.143, issue.1, pp.119-123, 2009.
DOI : 10.1016/j.snb.2009.09.026

N. Terada, S. Mitsuda, Y. Oohara, H. Yoshizawa, and H. Takei, Anomalous magnetic excitation on triangular lattice antiferromagnet CuFeO 2, J. Magn. Magn. Mater, pp.272-276, 2004.

R. Hoffman and J. Wager, Transistor Device Having a Delafossite Material, U.S. Patent, vol.7, issue.026, p.713, 2006.

O. Sullivan, M. Stamenov, P. Alaria, J. Venkatesan, M. Coey et al., Magnetoresistance of CuCrO 2 -based delafossite films, J. Phys. Conf. Ser, p.52021, 0200.

J. Shu, X. Zhu, and T. Yi, RETRACTED: CuCrO2 as anode material for lithium ion batteries, Electrochimica Acta, vol.54, issue.10, pp.2795-2799, 2009.
DOI : 10.1016/j.electacta.2008.11.040

X. Huang, C. Ni, G. Zhao, and J. T. Irvine, composite system, Journal of Materials Chemistry A, vol.45, issue.56, pp.12958-12964
DOI : 10.1016/S1359-6454(97)00052-9

A. K. Díaz-garcía, T. Lana-villarreal, and R. Gómez, Sol???gel copper chromium delafossite thin films as stable oxide photocathodes for water splitting, Journal of Materials Chemistry A, vol.24, issue.39, pp.19683-19687
DOI : 10.1002/adfm.201402742

C. Taddee, T. Kamwanna, and V. Amornkitbamrung, Characterization of transparent superconductivity Fe-doped CuCrO 2 delafossite oxide, Applied Surface Science, vol.380, issue.380, pp.237-242
DOI : 10.1016/j.apsusc.2016.01.120

T. Suriwong, T. Thongtem, and S. Thongtem, Thermoelectric and optical properties of CuAlO2 synthesized by direct microwave heating, Current Applied Physics, vol.14, issue.9, pp.1257-1262, 2014.
DOI : 10.1016/j.cap.2014.06.024

K. Hayashi, T. Nozaki, and T. Kajitani, ???0.05), Japanese Journal of Applied Physics, vol.46, issue.8A, pp.5226-5229, 2007.
DOI : 10.1143/JJAP.46.5226

K. Park, K. Y. Ko, H. C. Kwon, and S. Nahm, Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3, Journal of Alloys and Compounds, vol.437, issue.1-2, pp.1-6, 2007.
DOI : 10.1016/j.jallcom.2006.07.067

K. Isawa, Y. Yaegashi, S. Ogota, M. Nagano, S. Sudo et al., Y, La, Pr, Nd, Sm, and Eu), Physical Review B, vol.47, issue.232, pp.7950-7954, 1998.
DOI : 10.1103/RevModPhys.47.773

A. N. Banerjee, R. Maity, P. K. Ghosh, and K. K. Chattopadhyay, Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films, Thin Solid Films, vol.474, issue.1-2, pp.261-266, 2005.
DOI : 10.1016/j.tsf.2004.08.117

K. Park, K. Y. Ko, and W. Seo, Thermoelectric properties of CuAlO2, Journal of the European Ceramic Society, vol.25, issue.12, pp.2219-2222, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.034

E. Guilmeau, A. Maignan, and C. Martin, Thermoelectric Oxides: Effect of Doping in Delafossites and Zinc Oxide, Journal of Electronic Materials, vol.72, issue.7, pp.1104-1107, 2009.
DOI : 10.1007/s11664-009-0815-2

T. Nozaki, K. Hayashi, T. Kajitani, K. Nozaki, K. Hayashi et al., Electronic Structure and Thermoelectric Properties of the Delafossite-Type Oxides CuFe1???x Ni x O2, Journal of Electronic Materials, vol.195, issue.7, pp.1282-1286, 2009.
DOI : 10.1007/s11664-009-0775-6

C. Ruttanapun, Effects of Pd substitution on the thermoelectric and electronic properties of delafossite Cu1???xPdxFeO2 (x=0.01, 0.03 and 0.05), Journal of Solid State Chemistry, vol.215, issue.2, pp.43-49, 2014.
DOI : 10.1016/j.jssc.2014.03.027

K. Hayashi, K. I. Sato, K. Nozaki, and T. Kajitani, Effect of Doping on Thermoelectric Properties of Delafossite-Type Oxide CuCrO 2, Jpn. J. Appl. Phys, vol.57, pp.59-63, 2008.

Y. Ono, K. Satoh, T. Nozaki, T. Kajitani, and . Structural, ???0.05), Japanese Journal of Applied Physics, vol.46, issue.3A, pp.1071-1075, 2007.
DOI : 10.1143/JJAP.46.1071

T. Okuda, N. Jufuku, S. Hidaka, and N. Terada, Magnetic, transport, and thermoelectric properties of the delafossite oxides CuCr 1?x Mg, Phys. Rev. B, pp.72-144403, 2005.

L. Farrell, E. Norton, C. M. Smith, D. Caffrey, I. V. Shvets et al., Synthesis of nanocrystalline Cu deficient CuCrO 2 ?A high figure of merit p-type transparent semiconductor, J. Mater. Chem. C, vol.126, pp.126-134, 2016.

L. Popa, P. Crêpellière, J. Leturcq, R. Lenoble, and D. , Electrical and optical properties of Cu???Cr???O thin films fabricated by chemical vapour deposition, Thin Solid Films, vol.612, pp.194-201, 2016.
DOI : 10.1016/j.tsf.2016.05.052

T. N. Ngo, T. T. Palstra, and G. R. Blake, Crystallite size dependence of thermoelectric performance of CuCrO 2, RSC Adv. 2016, vol.6, pp.91171-91178

S. Gotzendorfer, R. Bywalez, and P. Lobmann, Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol???gel processing, Journal of Sol-Gel Science and Technology, vol.517, issue.377, pp.113-119, 2009.
DOI : 10.1007/s10971-009-1989-z

F. Lin, C. Gao, X. Zhou, W. Shi, and A. Liu, Magnetic, electrical and optical properties of p-type Fe-doped CuCrO2 semiconductor thin films, Journal of Alloys and Compounds, vol.581, pp.502-507, 2013.
DOI : 10.1016/j.jallcom.2013.07.160

R. Yu and D. Hu, Formation and characterization of p-type semiconductor CuCrO2 thin films prepared by a sol???gel method, Ceramics International, vol.41, issue.8, pp.9383-9391, 2015.
DOI : 10.1016/j.ceramint.2015.03.313

H. Chen, J. Wu, and C. Huang, Development of a fast annealing process to prepare transparent conductive Mg-doped CuCrO 2 thin films, Thin Solid Films, vol.605, pp.180-185, 2016.
DOI : 10.1016/j.tsf.2015.11.079

Q. Meng, S. S. Lu, S. S. Lu, and Y. Xiang, Preparation of p-type CuCr1???x Mg x O2 bulk with improved thermoelectric properties by sol???gel method, Journal of Sol-Gel Science and Technology, vol.2, issue.1, pp.1-7, 2012.
DOI : 10.1016/j.phpro.2009.06.016

C. Ruttanapun and S. Maensiri, Effects of spin entropy and lattice strain from mixed-trivalent Fe 3+ /Cr 3+ on the electronic, thermoelectric and optical properties of delafossite CuFe 1?x Cr x O 2, J. Phys. D Appl. Phys, pp.48-495103, 2015.

R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, -type conductivity in CuCr1???xMgxO2 films and powders, Journal of Applied Physics, vol.89, issue.12, pp.8022-8025, 2001.
DOI : 10.1016/0025-5408(86)90156-X

T. S. Tripathi, J. Niemelä, and M. Karppinen, thin films, Journal of Materials Chemistry C, vol.282, issue.8, pp.8364-8371
DOI : 10.1016/j.apsusc.2013.05.061

URL : https://hal.archives-ouvertes.fr/in2p3-00610608

E. Chikoidze, M. Boshta, M. Gomaa, T. Tchelidze, D. Daraselia et al., Control of p-type conduction in Mg doped monophase CuCrO 2 thin layers, J. Phys. D Appl. Phys, p.49, 2016.

A. C. Rastogi, S. H. Lim, and S. B. Desu, Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films, Journal of Applied Physics, vol.26, issue.2, p.23712, 2008.
DOI : 10.1103/PhysRevB.57.7950

S. H. Lim, S. Desu, and A. C. Rastogi, Chemical spray pyrolysis deposition and characterization of p-type CuCr1???xMgxO2 transparent oxide semiconductor thin films, Journal of Physics and Chemistry of Solids, vol.69, issue.8, pp.2047-2056, 2008.
DOI : 10.1016/j.jpcs.2008.03.007

L. Trong, H. Bui, T. M. Presmanes, L. Barnabé, A. Pasquet et al., Preparation of iron cobaltite thin films by RF magnetron sputtering, Thin Solid Films, vol.589, pp.292-297, 2015.
DOI : 10.1016/j.tsf.2015.05.041

URL : https://hal.archives-ouvertes.fr/hal-01168678

M. Lalanne, A. Barnabé, F. Mathieu, and P. Tailhades, ??? 1, Inorganic Chemistry, vol.48, issue.13, pp.6065-6071, 2009.
DOI : 10.1021/ic900437x

T. W. Chiu, S. W. Tsai, Y. P. Wang, and K. H. Hsu, Preparation of p-type conductive transparent CuCrO2:Mg thin films by chemical solution deposition with two-step annealing, Ceramics International, vol.38, pp.673-676, 2012.
DOI : 10.1016/j.ceramint.2011.09.048

C. Lin and J. Wang, Sol???gel preparation of delafossite CuCr 1???x Mg x O 2 thin films by nitrate salts, Materials Letters, vol.165, pp.111-114, 2016.
DOI : 10.1016/j.matlet.2015.11.123

S. Götzendörfer and P. Löbmann, Influence of single layer thickness on the performance of undoped and Mg-doped CuCrO2 thin films by sol???gel processing, Journal of Sol-Gel Science and Technology, vol.104, issue.2, pp.157-163, 2011.
DOI : 10.1063/1.2957056

D. O. Scanlon and G. W. Watson, Understanding the p-type defect chemistry of CuCrO2, Journal of Materials Chemistry, vol.104, issue.377, p.3655, 2011.
DOI : 10.1063/1.2991157

B. J. Ingram, G. B. Gonzá-lez, T. O. Mason, D. Y. Shahriari, A. Barnabé et al., Transport and Defect Mechanisms in Cuprous Delafossites. 1. Comparison of Hydrothermal and Standard Solid-State Synthesis in CuAlO 2, Chem. Mater, vol.14, pp.5616-5622, 2004.

B. J. Ingram, M. I. Bertoni, K. R. Poeppelmeier, and T. Mason, Point defects and transport mechanisms in transparent conducting oxides of intermediate conductivity, Thin Solid Films, vol.486, issue.1-2, pp.86-93, 2005.
DOI : 10.1016/j.tsf.2004.10.060

E. Norton, L. Farrell, S. D. Callaghan, C. Mcguinness, I. V. Shvets et al., X ray spectroscopic studies of the electronic structure of chromium based p type transparent conducting oxides, Phys. Rev. B, pp.93-115302, 2016.

G. H. Jonker, The application of combined conductivity and Seebeck effet plots for the analysis of semiconductor properties, Philips Res. Rep, vol.23, pp.131-138, 1968.

J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, vol.3, issue.1, pp.37-46, 1968.
DOI : 10.1016/0025-5408(68)90023-8

S. Ebraheem and A. El-saied, Band Gap Determination from Diffuse Reflectance Measurements of Irradiated Lead Borate Glass System Doped with TiO<sub>2</sub> by Using Diffuse Reflectance Technique, Materials Sciences and Applications, vol.04, issue.05, pp.324-329, 2013.
DOI : 10.4236/msa.2013.45042

I. C. Kaya, M. A. Sevindik, and H. Aky?ld?z, Characteristics of Fe- and Mg-doped CuCrO2 nanocrystals prepared by hydrothermal synthesis, Journal of Materials Science: Materials in Electronics, vol.63, issue.3, pp.2404-2411, 2016.
DOI : 10.1007/s10971-012-2732-8

N. Mott, Conduction in Non-Crystalline Materials, 1987.

P. M. Chaikin and G. Beni, Thermopower in the correlated hopping regime, Physical Review B, vol.12, issue.2, pp.647-651, 1976.
DOI : 10.1016/0038-1098(73)90861-2

D. O. Scanlon, K. G. Godinho, B. J. Morgan, and G. W. Watson, Understanding conductivity anomalies in CuI-based delafossite transparent conducting oxides: Theoretical insights, The Journal of Chemical Physics, vol.543, issue.2, p.24707, 2010.
DOI : 10.1016/S0040-6090(03)01174-X