V. Demarne and A. Grisel, An integrated low-power thin-film CO gas sensor on silicon, Sensors and Actuators, vol.13, issue.4, pp.301-313, 1988.
DOI : 10.1016/0250-6874(88)80043-X

J. Courbat, M. Canonica, D. Teyssieux, D. Briand, and N. De-rooijet, Design and fabrication of micro-hotplates made on a polyimide foil: Electrothermal simulation and characterization to achieve power consumption in the low mW range Micromachined semiconductor gas sensors, Semiconductor Gas Sensors, 2010.

R. Jaaniso and O. K. Tan, General characteristics of thermally cycled tin oxide gas Sensors, Semicond. Sci. Technol, vol.4, pp.220-260, 1989.

H. J. Pandya, S. Chandra, and A. L. Vyas, Integration of ZnO nanostructures with MEMS for ethanol sensor, Sensors and Actuators B: Chemical, vol.161, issue.1
DOI : 10.1016/j.snb.2011.11.063

K. Q. Peng, X. Wang, and S. T. Lee, Gas sensing properties of single crystalline porous silicon nanowires, Applied Physics Letters, vol.95, issue.24
DOI : 10.1021/nl901734e

K. Y. Dong, J. K. Choi, I. S. Hwang, J. W. Lee, B. H. Kang et al., Enhanced H2S sensing characteristics of Pt doped SnO2 nanofibers sensors with micro heater, Sensors and Actuators B: Chemical, vol.157, issue.1, pp.154-161, 2011.
DOI : 10.1016/j.snb.2011.03.043

F. Oudrhiri-hassani, L. Presmanes, A. Barnabé, and P. H. Tailhades, Microstructure, porosity and roughness of RF sputtered oxide thin films: Characterization and modelization, Applied Surface Science, vol.254, issue.18, pp.5796-5802, 2008.
DOI : 10.1016/j.apsusc.2008.03.149

I. Sandu, L. Presmanes, P. Alphonse, and P. Tailhades, Nanostructured cobalt manganese ferrite thin films for gas sensor application, Thin Solid Films, vol.495, issue.1-2, pp.130-133, 2006.
DOI : 10.1016/j.tsf.2005.08.318

URL : https://hal.archives-ouvertes.fr/hal-00474866

A. Chapelle, I. Younsi, S. Vitale, Y. Thimont, T. Nelis et al., Improved semiconducting CuO/CuFe2O4 nanostructured thin films for CO2 gas sensing, Sensors and Actuators B: Chemical, vol.204, pp.407-413, 2014.
DOI : 10.1016/j.snb.2014.07.088

URL : https://hal.archives-ouvertes.fr/hal-01170563

A. Chapelle, M. Yaacob, I. Pasquet, L. Presmanes, A. Barnabe et al., Structural and gas-sensing properties of CuO???CuxFe3???xO4 nanostructured thin films, Sensors and Actuators B: Chemical, vol.153, issue.1, pp.117-124, 2011.
DOI : 10.1016/j.snb.2010.10.018

URL : https://hal.archives-ouvertes.fr/hal-00717490

L. Presmanes, A. Chapelle, F. Oudrhiri-hassani, A. Barnabe, and P. Tailhades, Synthesis and CO Gas-Sensing Properties of CuO and Spinel Ferrite Nanocomposite Thin Films, Sensor Letters, vol.9, issue.2, pp.587-590
DOI : 10.1166/sl.2011.1568

Y. K. Jeong and G. M. Choi, Nonstoichiometry and electrical conduction of CuO, Journal of Physics and Chemistry of Solids, vol.57, issue.1, pp.81-84, 1996.
DOI : 10.1016/0022-3697(95)00130-1

F. P. Koffyberg and F. A. Benko, ???type CuO, Journal of Applied Physics, vol.1, issue.2, pp.1173-1177, 1982.
DOI : 10.1103/PhysRevB.8.4857

H. J. Kim and J. H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview, Sensors and Actuators B: Chemical, vol.192, issue.192, pp.607-627
DOI : 10.1016/j.snb.2013.11.005

G. Zhu, H. Xu, Y. Xiao, Y. Liu, A. Yuan et al., Facile Fabrication and Enhanced Sensing Properties of Hierarchically Porous CuO Architectures, ACS Applied Materials & Interfaces, vol.4, issue.2, pp.744-751, 2012.
DOI : 10.1021/am2013882

J. Chen, K. Wang, L. Hartman, and W. Zhou, S Detection by Vertically Aligned CuO Nanowire Array Sensors, The Journal of Physical Chemistry C, vol.112, issue.41
DOI : 10.1021/jp805919t

S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, and A. Köck, Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere, Sensors and Actuators B: Chemical, vol.186, pp.550-556, 2013.
DOI : 10.1016/j.snb.2013.06.044

N. S. Ramgir, S. Ganapathi, M. Kaur, N. Datta, K. P. Muthe et al., Sub-ppm H2S sensing at room temperature using CuO thin films, Sensors and Actuators B: Chemical, vol.151, issue.1, pp.90-96, 2010.
DOI : 10.1016/j.snb.2010.09.043

Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li et al., Hierarchically Porous CuO Hollow Spheres Fabricated via a One-Pot Template-Free Method for High-Performance Gas Sensors, The Journal of Physical Chemistry C, vol.116, issue.22
DOI : 10.1021/jp212029n

X. Li, Y. Wang, Y. Lei, and Z. Gu, Highly sensitive H2S sensor based on template-synthesized CuO nanowires, RSC Advances, vol.29, issue.6
DOI : 10.1177/1091581810384882

F. Zhang, A. Zhu, Y. Luo, Y. Tian, J. Yang et al., S with High Recovery Ability, The Journal of Physical Chemistry C, vol.114, issue.45, pp.19214-19219, 2010.
DOI : 10.1021/jp106098z

C. Yang, X. Su, F. Xiao, J. Jian, and J. Wang, Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method, Sensors and Actuators B: Chemical, vol.158, issue.1, pp.299-303, 2011.
DOI : 10.1016/j.snb.2011.06.024

S. Steinhauer, E. Brunet, T. Maier, G. C. Mutinati, A. Köck et al., Gas sensing properties of novel CuO nanowire devices, Sensors and Actuators B: Chemical, vol.187, pp.50-57, 2013.
DOI : 10.1016/j.snb.2012.09.034

A. Aslani and V. Oroojpour, CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route, Physica B: Condensed Matter, vol.406, issue.2, pp.144-149
DOI : 10.1016/j.physb.2010.09.038

L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao et al., Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors, Nanotechnology, vol.20, issue.8, p.85203, 2009.
DOI : 10.1088/0957-4484/20/8/085203

Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee, CuO nanowire gas sensors for air quality control in automotive cabin, Sensors and Actuators B: Chemical, vol.135, issue.1, pp.298-303, 2008.
DOI : 10.1016/j.snb.2008.08.026

K. M. Kim, H. M. Jeong, H. R. Kim, K. I. Choi, H. J. Kim et al., Selective Detection of NO2 Using Cr-Doped CuO Nanorods, Sensors, vol.139, issue.6, pp.8013-8025, 2012.
DOI : 10.1016/j.snb.2009.03.065

P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong et al., Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction, Ceramics International, vol.35, issue.2, pp.649-652, 2009.
DOI : 10.1016/j.ceramint.2008.01.028

H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu et al., Ethanol Gas Sensor of Crabwise CuO Nanowires Prepared on Glass Substrate, Journal of The Electrochemical Society, vol.20, issue.4, pp.106-109, 2011.
DOI : 10.1088/0957-4484/18/14/145506

A. S. Zoolfakar, M. Z. Ahmad, R. A. Rani, J. Z. Ou, S. Balendhran et al., Nanostructured copper oxides as ethanol vapour sensors, Sensors and Actuators B: Chemical, vol.185, pp.620-627, 2013.
DOI : 10.1016/j.snb.2013.05.042

M. Mashock, K. Yu, S. Cui, S. Mao, G. Lu et al., Modulating Gas Sensing Properties of CuO Nanowires through Creation of Discrete Nanosized p???n Junctions on Their Surfaces, ACS Applied Materials & Interfaces, vol.4, issue.8, pp.4192-4199, 2012.
DOI : 10.1021/am300911z

P. Walden, J. Kneer, S. Knobelspies, W. Kronast, U. Mescheder et al., Micromachined Hotplate Platform for the Investigation of Ink-Jet Printed, Functionalized Metal Oxide Nanoparticles, Journal of Microelectromechanical Systems, vol.24, issue.5, pp.1384-1390, 2015.
DOI : 10.1109/JMEMS.2015.2399696

J. Kneer, S. Knobelspies, B. Bierer, and J. Wöllenstein, New method to selectively determine hydrogen sulfide concentrations using CuO layers, Sensors and Actuators B: Chemical, vol.222, pp.625-631, 2016.
DOI : 10.1016/j.snb.2015.08.071

L. Presmanes, Y. Thimont, A. Chapelle, F. Blanc, C. Talhi et al., Highly Sensitive Sputtered ZnO:Ga Thin Films Integrated by a Simple Stencil Mask Process on Microsensor Platforms for Sub-ppm Acetaldehyde Detection, Sensors, vol.8, issue.5, p.1055, 2017.
DOI : 10.1557/jmr.2010.0300

M. A. Bui, H. Le-trong, L. Presmanes, A. Barnabé, C. Bonningue et al., prepared by radio frequency sputtering ??? the first step towards their spinodal decomposition, CrystEngComm, vol.9, issue.16, pp.3359-3365, 2014.
DOI : 10.1016/0022-3697(59)90206-9

URL : https://hal.archives-ouvertes.fr/hal-01067955

L. Trong, H. Bui, T. M. Presmanes, L. Barnabé, A. Pasquet et al., Preparation of iron cobaltite thin films by RF magnetron sputtering, Thin Solid Films, vol.589, pp.292-297, 2015.
DOI : 10.1016/j.tsf.2015.05.041

URL : https://hal.archives-ouvertes.fr/hal-01168678

C. Shang, Y. Thimont, A. Barnabe, L. Presmanes, I. Pasquet et al., Detailed microstructure analysis of as-deposited and etched porous ZnO films, Applied Surface Science, vol.344, pp.242-248, 2015.
DOI : 10.1016/j.apsusc.2015.03.097

URL : https://hal.archives-ouvertes.fr/hal-01218614

P. Menini, Habilitation à Diriger les Recherches (Figure 51 page 97, and Figure 54 page 101) Available online: https, 2011.

L. Debbichi, M. C. Marco-de-lucas, J. F. Pierson, and P. Krüger, from First-Principles Calculations, and Raman and Infrared Spectroscopy, The Journal of Physical Chemistry C, vol.116, issue.18, pp.10232-10237, 2012.
DOI : 10.1021/jp303096m

URL : https://hal.archives-ouvertes.fr/hal-00719327

B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering et al., Binary copper oxide semiconductors: From materials towards devices, physica status solidi (b), vol.93, issue.470, pp.1487-1509
DOI : 10.1063/1.2977478

URL : http://onlinelibrary.wiley.com/doi/10.1002/pssb.201248128/pdf

A. Website, Available online: https://www.anses.fr/en (accessed on 16, 2017.

K. Kim, H. Jeong, H. Kim, K. Choi, H. Kim et al., Selective Detection of NO2 Using Cr-Doped CuO Nanorods, Sensors, vol.139, issue.6, pp.8013-8025, 2012.
DOI : 10.1016/j.snb.2009.03.065

E. M. Cordi, P. J. Neill, and J. L. Falconer, Transient oxidation of volatile organic compounds on aCuO/Al2O3 catalyst, Applied Catalysis B: Environmental, vol.14, issue.1-2, pp.23-36, 1997.
DOI : 10.1016/S0926-3373(97)00009-X

T. A. Kunt, T. J. Mcavoy, R. E. Cavicchi, and S. Semancik, Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors, Sensors and Actuators B: Chemical, vol.53, issue.1-2, pp.24-43, 1998.
DOI : 10.1016/S0925-4005(98)00244-5

C. Tropis, P. Menini, A. Martinez, N. Yoboue, B. Franc et al., Characterization of dynamic measurement with nanoparticular SnO 2 gas sensors, Proceedings of the 20th MicroMechanics Europe Workshop, pp.20-22, 2009.

R. Ionescu, E. Llobet, S. Khalifa, J. W. Gardner, X. Vilanova et al., Response model for thermally modulated tin oxide-based microhotplate gas sensors, Sensors and Actuators B: Chemical, vol.95, issue.1-3, pp.203-211, 2003.
DOI : 10.1016/S0925-4005(03)00420-9

J. Ducéré, A. Hemeryck, A. Estève, M. D. Rouhani, G. Landa et al., A computational chemist approach to gas sensors: Modeling the response of SnO2 to CO, O2, and H2O Gases, Journal of Computational Chemistry, vol.118, issue.190, pp.247-258, 2012.
DOI : 10.1016/j.snb.2006.04.055

J. Kneer, J. Wöllenstein, and S. Palzer, Manipulating the gas???surface interaction between copper(II) oxide and mono-nitrogen oxides using temperature, Sensors and Actuators B: Chemical, vol.229, pp.57-62, 2016.
DOI : 10.1016/j.snb.2016.01.104