Flame–wall interaction effects on the flame root stabilization mechanisms of a doubly-transcritical LO2/LCH4 cryogenic flame - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue Proceedings of the Combustion Institute Année : 2019

Flame–wall interaction effects on the flame root stabilization mechanisms of a doubly-transcritical LO2/LCH4 cryogenic flame

Résumé

High-fidelity numerical simulations are used to study flame root stabilization mechanisms of cryogenic flames, where both reactants (O2 and CH4) are injected in transcritical conditions in the geometry of the laboratory scale test rig Mascotte operated by ONERA (France). Simulations provide a detailed insight into flame root stabilization mechanisms for these diffusion flames: they show that the large wall heat losses at the lips of the coaxial injector are of primary importance, and require to solve for the fully coupled conjugate heat transfer problem. In order to account for flame–wall interaction (FWI) at the injector lip, detailed chemistry effects are also prevalent and a detailed kinetic mechanism for CH4 oxycombustion at high pressure is derived and validated. This kinetic scheme is used in a real-gas fluid solver, coupled with a solid thermal solver in the splitter plate to calculate the unsteady temperature field in the lip. A simulation with adiabatic boundary conditions, an hypothesis that is often used in real-gas combustion, is also performed for comparison. It is found that adiabatic walls simulations lead to enhanced cryogenic reactants vaporization and mixing, and to a quasi-steady flame, which anchors within the oxidizer stream. On the other hand, FWI simulations produce self-sustained oscillations of both lip temperature and flame root location at similar frequencies: the flame root moves from the CH4 to the O2 streams at approximately 450 Hz, affecting the whole flame structure.
Fichier principal
Vignette du fichier
laurent_22926.pdf (501.87 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01865078 , version 1 (16-04-2019)

Identifiants

Citer

C. Laurent, L. Esclapez, D. Maestro, G. Staffelbach, B. Cuenot, et al.. Flame–wall interaction effects on the flame root stabilization mechanisms of a doubly-transcritical LO2/LCH4 cryogenic flame. Proceedings of the Combustion Institute, 2019, 37 (4), pp.5147-5154. ⟨10.1016/j.proci.2018.05.105⟩. ⟨hal-01865078⟩
82 Consultations
70 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More