C. Galliot, J. Rousseau, and G. Verchery, Drop weight tensile impact testing of adhesively bonded carbon/epoxy laminate joints, International Journal of Adhesion and Adhesives, vol.35, pp.68-75, 2012.
DOI : 10.1016/j.ijadhadh.2012.02.002

M. D. Banea and L. Da-silva, Adhesively bonded joints in composite materials: An overview, Proceedings of the Institution of Mechanical Engineers, vol.223, issue.1, pp.1-18, 2009.
DOI : 10.1243/14644207jmda219

L. Da-silva, R. D. Adams, and B. Blackman, Higher Rate and Impact Tests, Testing Adhesive Joints, pp.273-317, 2012.

C. Galliot, Static and dynamic behavior of adhesively bonded composite laminates, 2007.

P. L. Goglio, Handbook of Adhesion Technology, pp.503-532, 2011.

, Standard test method for impact strength of adhesive bonds. ASTM D950-03, pp.950-953, 2011.

R. D. Adams and J. A. Harris, A critical assessment of the block impact test for measuring the impact strength of adhesive bonds, International Journal of Adhesion and Adhesives, vol.16, issue.2, pp.61-71, 1996.

S. Khalili, A. Shokuhfar, and S. D. Hoseini, Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads, International Journal of Adhesion and Adhesives, vol.28, issue.8, pp.436-444, 2008.

L. Goglio and M. Rossetto, Impact rupture of structural adhesive joints under different stress combinations, International Journal of Impact Engineering, vol.35, issue.7, pp.635-643, 2008.
DOI : 10.1016/j.ijimpeng.2007.02.006

C. Sato and K. Ikegami, Strength of Adhesively-Bonded Butt Joints of Tubes Subjected to Combined High-Rate Loads. The Journal of Adhesion, vol.70, pp.57-73, 1999.

L. Goglio, L. Peroni, and M. Peroni, High strain-rate compression and tension behaviour of an epoxy bi-component adhesive, International Journal of Adhesion and Adhesives, vol.28, issue.7, pp.329-339, 2008.

S. L. Raykhere, P. Kumar, and R. K. Singh, Dynamic shear strength of adhesive joints made of metallic and composite adherents, Materials & Design, vol.31, issue.4, pp.2102-2109, 2010.

T. Yokoyama and K. Nakai, Determination of the impact tensile strength of structural adhesive butt joints with a modified split Hopkinson pressure bar, International Journal of Adhesion and Adhesives, vol.56, pp.13-23, 2015.

U. K. Vaidya, A. Gautam, and M. Hosur, Experimental-numerical studies of transverse impact response of adhesively bonded lap joints in composite structures, International Journal of Adhesion and Adhesives, vol.26, issue.3, pp.184-198, 2006.

S. S. Pang, C. Yang, and Y. Zhao, Impact response of single-lap composite joints, Composites Engineering, vol.5, issue.8, pp.1011-1027, 1995.
DOI : 10.1016/0961-9526(95)00003-6

I. Higuchi, T. Sawa, and H. Suga, Three-dimensional finite element analysis of single-lap adhesive joints subjected to impact bending moments, Journal of Adhesion Science and Technology, vol.16, issue.10, pp.1327-1342, 2002.

B. Blackman, A. J. Kinloch, and A. C. Taylor, The impact wedge-peel performance of structural adhesives, Journal of Materials Science, vol.35, issue.8, pp.1867-1884, 2000.

B. Blackman, A. J. Kinloch, R. Sanchez, and F. S. , The fracture behaviour of structural adhesives under high rates of testing, Engineering Fracture Mechanics, vol.76, issue.18, pp.2868-2889, 2009.

, Standard Test Method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal). ASTM D1002-10, pp.1002-1012, 2010.

H. Park and H. Kim, Damage resistance of single lap adhesive composite joints by transverse ice impact, International Journal of Impact Engineering, vol.37, issue.2, pp.177-184, 2010.
DOI : 10.1016/j.ijimpeng.2009.08.005

F. Silva, L. , D. Adams, and R. , Techniques to reduce the peel stresses in adhesive joints with composites, International Journal of Adhesion and Adhesives, vol.27, issue.3, pp.227-235, 2007.

J. Y. Cognard, Numerical analysis of edge effects in adhesively-bonded assemblies application to the determination of the adhesive behaviour, Computers & Structures, vol.86, pp.1704-1717, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00449158

. Créac'hcadec-r, G. Jamin, and J. Y. Cognard, Experimental analysis of the mechanical behaviour of a thick flexible adhesive under tensile/compression-shear loads, International Journal of Adhesion & Adhesives, vol.48, pp.258-267, 2014.

Z. Yosibash, Computing singular solutions of elliptic boundary value problems in polyhedral domains using the p-FEM, Applied Numerical Mathematics, vol.33, p.7193, 2000.

, Standard Test Method for measuring strength and shear modulus of nonrigid adhesives by the thick-adherend tensile-lap specimen. ASTM D3983-98, pp.3983-98, 2011.

, Adhesives-Determination of shear behaviour of structural adhesives-Part 2: Tensile test method using thick adherends. ISO 11003-2, pp.11003-11005, 2011.

J. Y. Cognard, R. Créac'hcadec, and L. Sohier, Influence of adhesive thickness on the behaviour of bonded assemblies under shear loadings using a modified TAST fixture, International Journal of Adhesion and Adhesives, vol.30, issue.5, pp.257-266, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00489162

J. Y. Cognard, R. Créac'hcadec, and L. Sohier, Analysis of the nonlinear behavior of adhesives in bonded assemblies -Comparison of TAST and Arcan tests, International Journal of Adhesion and Adhesives, vol.28, issue.8, pp.393-404, 2008.

. Créac'hcadec-r, L. Sohier, and C. Cellard, An Arcan Tensile Compression Shear Test reducing the edge effects suited for the determination of the Load-Displacement Behaviour of Adhesives in Bonded Assemblies, International Journal of Adhesion and Adhesives, 2015.

L. Arcan, M. Arcan, and L. Daniel, SEM fractography of pure and mixed mode interlaminar fracture in graphite/epoxy composites, Philadelphia, vol.948, pp.41-67, 1987.

J. Y. Cognard, P. Davies, and L. Sohier, A study of the non-linear behaviour of adhesively-bonded composite assemblies, Composite Structures, vol.76, pp.34-46, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00493242

J. Y. Cognard, P. Davies, and B. Gineste, Development of an improved adhesive test method for composite assembly design, Composite Science and Technology, vol.65, pp.359-368, 2005.

J. Y. Cognard and . Créac'hcadec-r, Analysis of the non linear behaviour of an adhesive in bonded assemblies under shear loadings. Proposal of an improved TAST test, Journal of Adhesion Science and Technology, vol.23, pp.1333-1355, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00449127

, Abaqus 6.12 Documentation, 2012.

G. Belingardi, L. Goglio, and A. Tarditi, Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints, International Journal of Adhesion and Adhesives, vol.22, issue.4, pp.273-282, 2002.

R. H. Kaye and M. Heller, Through-thickness shape optimisation of bonded repairs and lap-joints, International Journal of Adhesion and Adhesives, vol.22, issue.1, pp.7-21, 2002.
DOI : 10.1016/s0143-7496(01)00029-x

T. P. Lang and P. K. Mallick, Effect of spew geometry on stresses in single lap adhesive joints, International Journal of Adhesion and Adhesives, vol.18, issue.3, pp.167-177, 1998.

A. R. Rispler, L. Tong, and G. Steven, Shape optimisation of adhesive fillets, International Journal of Adhesion and Adhesives, vol.20, issue.3, pp.221-231, 2000.

. .. , Adapter jig for impact machines. (b) Block shear impact test specimens

. .. , 19 4 Stress distributions in the adhesive (extracted from h = {?e, ?e/2, 0, e/2, e}) along the overlap and zoom on the associated edge effects near the right and left edges of the adhesive joint. (a) ? xx distributions. (b) ? yy distributions. (c) ? xy distributions

?. }. , (b) Chamfered beaks with different angles ? = {15 ?, p.30

?. }. , (c) Filleted beaks with different angles ? = {15 ?, p.30

?. }. , Shoulder filleted beaks with different shoulder thicknesses t = {0 mm, 0.1 mm, 0.2 mm}

?. ). , b) Results for the tensile-shear test (? = 45 ? ). (c) Results for the shear test (? = 90 ? ). (d) Results for the compression-shear test (? = 135 ?

]. .. , 25 10 Description of the ARCAN TCS finite element model. (a) Boundary conditions. (b) Global mesh. (c) Zoom on the mesh near the right edge of the adhesive joint, p.27

, The spatial vs temporal stress distributions in the mid-plane of the adhesive (extracted from h = 0) in the case of a tensile test for three configurations : (a-c) m = 1 kg and v= 10.75 m.s ?1 . (d-f) m = 10 kg and v= 3

, xx distributions. (b, e, h) ? yy distributions. (c, f, i) ? xy distributions, vol.28, p.15

, 29 14 Modal analysis of the ARCAN TCS specimen. (a) Tensile test (m = 10 kg, v= 3.4 m.s ?1 ). (b) Compression-shear test (m = 50 kg, v= 1.52 m.s ?1 ). (c) Compression-shear test (m = 1 kg, v= 10.75 m.s ?1 ), The spatial vs temporal stress distributions in the mid-plane of the adhesive (extracted from h = 0) in the case of a compression-shear test for three configurations : (a-c) m = 1 kg and v= 10

, Main excited vibration modes. (a) Tensile loading. (b-d) Compression-shear loading