F. G. Pascual and W. Q. Meeker, Estimating fatigue curves with the random fatiguelimit model, Technometrics, vol.41, issue.4, pp.277-89, 1999.

J. Braam and S. Van-der-zwaag, A statistical evaluation of the staircase and the arcsin ffiffiffi P p methods for determining the fatigue limit, J Test Eval, vol.26, issue.2, pp.125-156, 1998.

Y. Feng, C. Gao, Y. He, A. T. Fan, C. Zhang et al., Investigation on tension-tension fatigue performances and reliability fatigue life of T700/MTM46 composite laminates, Compos Struct, vol.136, pp.64-74, 2016.

S. Y. Zamrik and R. N. Pangborn, Fatigue damage assessment using X-ray diffraction and life prediction methodology, Nucl Eng Des, vol.116, issue.3, pp.407-420, 1989.

A. C. Batista, J. P. Nobre, D. F. Peixoto, L. A. Ferreira, P. M. De-castro et al., X-ray diffraction residual stress measurements for assessment of rolling contact fatigue behaviour of railway steels, Adv Mater Res, vol.996, pp.782-789, 2014.

H. Zhang, P. C. Qu, Y. Sakaguchi, H. Toda, M. Kobayashi et al., Threedimensional characterization of fatigue crack propagation behavior in an aluminum alloy using high resolution X-ray microtomography, Mater Sci Forum Trans Tech Publicat, pp.378-83, 2010.

E. Bayraktar, S. Antolonovich, and C. Bathias, Multiscale study of fatigue behaviour of composite materials by v-rays computed tomography, Int J Fatigue, vol.28, issue.10, pp.1322-1355, 2006.

M. Mohammad, S. Abdullah, N. Jamaluddin, and O. Innayatullah, Acoustic emission evaluation of fatigue life prediction for a carbon steel specimen using a statistical-based approach, Mater Test, vol.55, issue.6, pp.487-95, 2013.

J. Kumar, S. Ahmad, C. Mukhopadhyay, T. Jayakumar, and V. Kumar, Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA steel, Nondestruct Test Eval, vol.31, issue.1, pp.77-96, 2016.

M. Bourchak, I. R. Farrow, I. P. Bond, C. W. Rowland, and F. Menan, Acoustic emission energy as a fatigue damage parameter for CFRP composites, Int J Fatigue, vol.29, issue.3, pp.457-70, 2007.

S. Masmoudi, E. Mahi, A. Turki, and S. , Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant, Appl Acoust, vol.108, pp.50-58, 2016.

K. Bao, Q. F. Wang, S. L. Liu, and Z. L. Wei, Study on local strain field intensity approach for prediction fatigue life of crankshaft based on mechanical mechanics, Adv Mater Res Trans Tech Publicat, pp.251-256, 2013.

J. Park, S. Kim, K. Kim, S. Park, and C. Lee, A microstructural model for predicting high cycle fatigue life of steels, Int J Fatigue, vol.27, issue.9, pp.1115-1138, 2005.

R. P. Janssen, L. E. Govaert, and H. E. Meijer, An analytical method to predict fatigue life of thermoplastics in uniaxial loading: sensitivity to wave type, frequency, and stress amplitude, Macromolecules, vol.41, issue.7, pp.2531-2571, 2008.

N. V. Akshantala and R. Talreja, A micromechanics based model for predicting fatigue life of composite laminates, Mater Sci Eng A, vol.285, issue.1, pp.303-316, 2000.

W. Lian and W. Yao, Fatigue life prediction of composite laminates by FEA simulation method, Int J Fatigue, vol.32, issue.1, pp.123-156, 2010.

H. Dong, Z. Li, J. Wang, and B. Karihaloo, A new fatigue failure theory for multidirectional fiber-reinforced composite laminates with arbitrary stacking sequence, Int J Fatigue, vol.87, pp.294-300, 2016.

L. Wang, B. Wang, S. Wei, Y. Hong, and C. Zheng, Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure, Compos B Eng, vol.97, pp.274-81, 2016.

A. Preumont and V. Piefort, Predicting random high-cycle fatigue life with finite elements, J Vib Acoust, vol.116, issue.2, pp.245-253, 1994.

M. P. Luong, Infrared thermographic scanning of fatigue in metals, Nucl Eng Des, vol.158, issue.2, pp.363-76, 1995.

M. P. Luong, Fatigue limit evaluation of metals using an infrared thermographic technique, Mech Mater, vol.28, issue.1, pp.155-63, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00111598

M. P. Luong, Infrared thermography of fatigue in metals, Aerosp Sens Int Soc Opt Photon, pp.222-255, 1992.

M. P. Luong and K. D. Van, Metal fatigue limit evaluation using infrared thermography, Proceedings of workshop advanced infrared technology and applications, pp.245-53, 1993.

A. L. Geraci, L. Rosa, G. Risitano, A. Grech, and M. , Determination of the fatigue limit of an austempered ductile iron using thermal infrared imagry. Digit. Photogram. Remote Sensing'95, Int. Soc. Opt. Photon, pp.306-323, 1995.

A. Geraci, L. Rosa, G. Risitano, and A. , On the new methodology for the determination of the fatigue limit of materials using thermal infrared techniques, Risk Minimiz. Exp. Mech, pp.183-90, 1992.

L. Rosa, G. Risitano, and A. , Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int J Fatigue, vol.22, issue.1, pp.65-73, 2000.

G. Fargione, A. Geraci, L. Rosa, G. Risitano, and A. , Rapid determination of the fatigue curve by the thermographic method, Int J Fatigue, vol.24, issue.1, pp.11-20, 2002.

A. Risitano and G. Risitano, Cumulative damage evaluation of steel using infrared thermography, Theoret Appl Fract Mech, vol.54, issue.2, pp.82-90, 2010.

A. Fernández-canteli, E. Castillo, A. Argüelles, P. Fernández, and M. Canales, Checking the fatigue limit from thermographic techniques by means of a probabilistic model of the epsilon-N field, Int J Fatigue, vol.39, pp.109-124, 2012.

R. Munier, C. Doudard, S. Calloch, and B. Weber, Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements, Int J Fatigue, vol.63, pp.46-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967431

Q. Guo and X. Guo, Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation, Mater Des, vol.90, pp.248-55, 2016.

X. Q. Liu, H. X. Zhang, Z. F. Yan, W. X. Wang, Y. G. Zhou et al., Fatigue life prediction of AZ31B magnesium alloy and its welding joint through infrared thermography, Theoret Appl Fract Mech, vol.67, pp.46-52, 2013.

S. Guo, Y. Zhou, H. Zhang, Z. Yan, W. Wang et al., Thermographic analysis of the fatigue heating process for AZ31B magnesium alloy, Mater Des, vol.65, pp.1172-80, 2015.

J. Montesano, Z. Fawaz, and H. Bougherara, Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite, Compos Struct, vol.97, pp.76-83, 2013.

C. Colombo, L. Vergani, and M. Burman, Static and fatigue characterisation of new basalt fibre reinforced composites, Compos Struct, vol.94, issue.3, pp.1165-74, 2012.

C. Colombo, F. Libonati, F. Pezzani, A. Salerno, and L. Vergani, Fatigue behaviour of a GFRP laminate by thermographic measurements, Procedia Eng, vol.10, issue.7, pp.3518-3545, 2011.

M. Karama, Determination of the fatigue limit of a carbon/epoxy composite using thermographic analysis, Struct. Cont. Health Monitor, vol.18, issue.7, pp.781-790, 2011.

L. Gornet, O. Wesphal, C. Burtin, J. L. Bailleul, P. Rozycki et al., Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations, Procedia Eng, vol.66, pp.697-704, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01240282

L. Gornet, O. Westphal, P. Rozycki, L. Stainier, and G. Kemlin, Rapid determination of the fatigue properties of carbon fiber epoxy matrix composite laminates by self heating tests. JST-AMAC-Transition statique-dynamique dans les matériaux et structures composites, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01240335

Z. S. Bagheri, E. Sawi, I. Bougherara, H. Zdero, and R. , Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography, J Mech Behav Biomed Mater, vol.35, pp.27-38, 2014.

C. Peyrac, T. Jollivet, N. Leray, F. Lefebvre, O. Westphal et al., Self-heating method for fatigue limit determination on thermoplastic composites, Procedia Eng, vol.133, pp.129-164, 2015.

P. Williams, M. Liakat, M. Khonsari, and O. Kabir, A thermographic method for remaining fatigue life prediction of welded joints, Mater Des, vol.51, pp.916-939, 2013.

V. Crupi, E. Guglielmino, M. Maestro, and A. Marinò, Fatigue analysis of butt welded AH36 steel joints: thermographic method and design S-N curve, Marine Struct, vol.22, issue.3, pp.373-86, 2009.

J. Fan, X. Guo, C. Wu, and Y. Zhao, Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints, Mater Sci Eng, A, vol.528, issue.29, pp.8417-8444, 2011.

H. Zhang, G. Wu, Z. Yan, S. Guo, P. Chen et al., An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography, Mater Des, vol.55, pp.785-91, 2014.

X. Li, H. Zhang, D. Wu, X. Liu, and J. Liu, Adopting lock-in infrared thermography technique for rapid determination of fatigue limit of aluminum alloy riveted component and affection to determined result caused by initial stress, Int J Fatigue, vol.36, issue.1, pp.18-23, 2012.

X. G. Wang, V. Crupi, X. L. Guo, and Y. G. Zhao, Quantitative thermographic methodology for fatigue assessment and stress measurement, Int J Fatigue, vol.32, issue.12, pp.1970-1976, 2010.

C. Clienti, G. Fargione, L. Rosa, G. Risitano, A. Risitano et al., A first approach to the analysis of fatigue parameters by thermal variations in static tests on plastics, Eng Fract Mech, vol.77, issue.11, pp.2158-67, 2010.

T. Boulanger, A. Chrysochoos, C. Mabru, and A. Galtier, Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels, Int J Fatigue, vol.26, issue.3, pp.221-230, 2004.

A. Chrysochoos, V. Dattoma, and B. Wattrisse, Deformation and dissipated energies for high cycle fatigue of 2024-T3 aluminium alloy, Theoret Appl Fract Mech, vol.52, issue.2, pp.117-138, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00534280

Q. Guo, X. Guo, J. Fan, R. Syed, and C. Wu, An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation, Int J Fatigue, vol.80, pp.136-180, 2015.

N. Connesson, F. Maquin, and F. Pierron, Dissipated energy measurements as a marker of microstructural evolution: 316L and DP600, Acta Mater, vol.59, issue.10, pp.4100-4115, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02005960

F. Curà, G. Curti, and R. Sesana, A new iteration method for the thermographic determination of fatigue limit in steels, Int J Fatigue, vol.27, issue.4, pp.453-462, 2005.

H. A. Ly, H. Inoue, and Y. Irie, Experimental and numerical study on temperature evolution for rapid evaluation of fatigue limit, EPJ web of conferences, p.38007, 2010.

A. E. Morabito, V. Dattoma, and U. Galietti, Energy analysis of fatigue damage by thermographic technique, Int. Soc. Opt. Photon, pp.456-63, 2002.

E. Z. Kordatos, K. G. Dassios, D. G. Aggelis, and T. E. Matikas, Rapid evaluation of the fatigue limit in composites using infrared lock-in thermdography and acoustic emission, Mech Res Commun, vol.54, pp.14-20, 2013.

L. Adam, Accelerated determination of the fatigue limit and the s-n curve by means of the thermographic method for X5CrNi18-10 steel, Acta Mechanica et Automatica, vol.10, issue.1, pp.22-29, 2016.

J. C. Krapez, D. Pacou, and G. Gardette, Lock-in thermography and fatigue limit of metals, Proceedings of QIRT, pp.277-82, 2000.

R. De-finis, D. Palumbo, F. Ancona, and U. Galietti, Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis, Int J Fatigue, vol.74, pp.88-96, 2015.