The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue Ecology Letters Année : 2019

The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns

Résumé

Empirical knowledge of diversity–stability relationships is mostly based on the analysis of temporal variability. Variability, however, often depends on external factors that act as disturbances, which makes comparisons across systems difficult to interpret. Here, we show how variability can reveal inherent stability properties of ecological communities. This requires that we abandon one-dimensional representations, in which a single variability measurement is taken as a proxy for how stable a system is, and instead consider the whole set of variability values generated by all possible stochastic perturbations. Despite this complexity, in species-rich systems, a generic pattern emerges from community assembly, relating variability to the abundance of perturbed species. Strikingly, the contrasting contributions of different species abundance classes to variability, driven by different types of perturbations, can lead to opposite diversity–stability patterns. We conclude that a multidimensional perspective on variability helps reveal the dynamical richness of ecological systems and the underlying meaning of their stability patterns.
Fichier principal
Vignette du fichier
arnoldi2019ecollett.pdf (1.65 Mo) Télécharger le fichier

Dates et versions

hal-02331167 , version 1 (25-11-2020)

Identifiants

Citer

Jean-François Arnoldi, Michel Loreau, Bart Haegeman. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecology Letters, 2019, 22 (10), pp.1557-1567. ⟨10.1111/ele.13345⟩. ⟨hal-02331167⟩
53 Consultations
43 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More