Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden-Popper Perovskites - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue ACS Energy Letters Année : 2019

Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden-Popper Perovskites

Edward P Booker
  • Fonction : Auteur
Samuel D Stranks
  • Fonction : Auteur

Résumé

There are a variety of possible ways to tune the optical properties of 2D perovskites, though the mutual dependence among different tuning parameters hinders our fundamental understanding of their properties. In this work, we attempt to address this issue for (CnH2n+1NH3)(2)PbI4 (with n = 4, 6, 8, 10, 12) using optical spectroscopy in high magnetic fields up to 67 T. Our experimental results, supported by DFT calculations, clearly demonstrate that the exciton reduced mass increases by around 30% in the low-temperature phase. This is reflected by a 2-3-fold decrease of the diamagnetic coefficient. Our studies show that the effective mass, which is an essential parameter for optoelectronic device operation, can be tuned by the variation of organic spacers and/or moderate cooling achievable using Peltier coolers. Moreover, we show that the complex absorption features visible in absorption/transmission spectra track each other in a magnetic field, providing strong evidence for the phonon-related nature of the observed side bands.

Domaines

Chimie
Fichier principal
Vignette du fichier
2D_perovskite_revised-2019pdf.pdf (1.12 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02359977 , version 1 (21-11-2019)

Identifiants

Citer

Michał Baranowski, Szymon J Zelewski, Mikael Kepenekian, Boubacar Traoré, Joanna M Urban, et al.. Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden-Popper Perovskites. ACS Energy Letters, 2019, 4 (10), pp.2386-2392. ⟨10.1021/acsenergylett.9b01435⟩. ⟨hal-02359977⟩
95 Consultations
73 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More