R. Komanduri and B. V. Turkovich, New observations on the mechanism of chip formation when machining titanium alloys, Wear, vol.69, issue.2, pp.179-88, 1981.

J. Barry, G. Byrne, and D. Lennon, Observations on chip formation and acoustic emission in machining Ti6Al4V alloy, Int J Mach Tools Manuf, vol.41, issue.7, 2001.

F. Ducobu, E. Rivière-lorphèvre, and E. Filippi, Numerical contribution to the comprehension of saw-toothed Ti6Al4V chip formation in orthogonal cutting, Int J Mech Sci, vol.81, pp.77-87, 2014.

C. R. Dandekar, Y. C. Shin, and J. Barnes, Machinability improvement of titanium alloy (Ti-6Al-4V) via lam and hybrid machining, Int J Mach Tools Manuf, vol.50, issue.2, pp.174-82, 2010.

M. Bermingham, S. Palanisamy, and M. Dargusch, Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V, Int J Mach Tools Manuf, vol.62, pp.76-87, 2012.

Y. Ayed, G. Germain, W. B. Salem, and H. Hamdi, Experimental and numerical study of laserassisted machining of Ti6Al4V titanium alloy, Finite Elem Anal Des, vol.92, pp.72-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065968

S. Y. Hong, M. I. Jeong, and W. , New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, Int J Mach Tools Manuf, vol.41, issue.15, pp.2245-60, 2001.

S. Sun, M. Brandt, and M. Dargusch, Machining Ti-6Al-4V alloy with cryogenic compressed air cooling, Int J Mach Tools Manuf, vol.50, issue.11, pp.933-975, 2010.

E. Ezugwu, R. D. Silva, J. Bonney, and Á. Machado, Evaluation of the performance of CBN tools when turning Ti-6Al-4V alloy with high pressure coolant supplies, Int J Mach Tools Manuf, vol.45, issue.9, pp.1009-1023, 2005.

P. Arrazola, A. Garay, L. Iriarte, M. Armendia, S. Marya et al., Machinability of titanium alloys (Ti6Al4V and Ti555.3), J Mater Process Technol, vol.209, issue.5, pp.2223-2253, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01002827

M. Bermingham, S. Palanisamy, D. Kent, and M. Dargusch, A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting, J Mater Process Technol, vol.212, issue.4, pp.752-65, 2012.

M. Sima and T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V, Int J Mach Tools Manuf, vol.50, issue.11, pp.943-60, 2010.

G. Sutter and G. List, Very high speed cutting of Ti-6Al-4V titanium alloy-change in morphology and mechanism of chip formation, Int J Mach Tools Manuf, vol.66, pp.37-43, 2013.

M. Harzallah, Caractérisation in-situ et modélisation des mécanismes et couplages thermomécaniques en usinage : application á l'alliage de titane Ti-6Al-4V. Thése de doctorat dirigée par Landon, Yann et Pottier, Thomas Génie mécanique, mécanique des matériaux Ecole nationale des Mines d, 2018.

M. Calamaz, D. Coupard, and F. Girot, A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti 6Al 4V, Int J Mach Tools Manuf, vol.48, issue.3, pp.275-88, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00911076

R. Komanduri, Some clarifications on the mechanics of chip formation when machining titanium alloys, Wear, vol.76, issue.1, pp.15-34, 1982.

A. Molinari, C. Musquar, and G. Sutter, Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling, Int J Plast, vol.18, issue.4, pp.443-59, 2002.

J. Hua and R. Shivpuri, Prediction of chip morphology and segmentation during the machining of titanium alloys, J Mater Process Technol, vol.150, issue.1, pp.124-157, 2004.

T. Pottier, G. Germain, M. Calamaz, A. Morel, and D. Coupard, Sub-millimeter measurement of finite strains at cutting tool tip vicinity, Exp Mech, vol.54, issue.6, pp.1031-1073, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01022455

M. Harzallah, T. Pottier, J. Senatore, M. Mousseigne, G. Germain et al., Numerical and experimental investigations of Ti-6Al-4V chip generation and thermomechanical couplings in orthogonal cutting, Int J Mech Sci, vol.134, pp.189-202, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622231

D. Owen and M. Vaz, Computational techniques applied to high-speed machining under adiabatic strain localization conditions, Comput Methods Appl Mech Eng, vol.171, issue.3, pp.445-61, 1999.

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng Fract Mech, vol.21, issue.1, pp.90052-90061, 1985.

T. Mabrouki, F. Girardin, M. Asad, and J. Rigal, Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (a2024-t351), Int J Mach Tools Manuf, vol.48, issue.11, pp.1187-97, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00383575

S. Atlati, B. Haddag, M. Nouari, and M. Zenasni, Analysis of a new segmentation intensity ratio sir to characterize the chip segmentation process in machining ductile metals, Int J Mach Tools Manuf, vol.51, issue.9, pp.687-700, 2011.

A. Dorogoy and D. Rittel, Determination of the johnson-cook material parameters using the SCS specimen, Exp Mech, vol.49, issue.6, p.881, 2008.

G. Germain, A. Morel, and T. Braham-bouchnak, Identification of material constitutive laws representative of machining conditions for two titanium alloys: Ti6Al4V and Ti555-3, J Eng Mater Technol, vol.135, issue.3, pp.31002-31013, 2013.

M. Yaich, Y. Ayed, Z. Bouaziz, and G. Germain, Numerical analysis of constitutive coefficients effects on fe simulation of the 2D orthogonal cutting process: application to the Ti6Al4V, Int J Adv Manuf Technol, vol.93, issue.1, pp.283-303, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01361858

F. Ducobu, E. Riviére-lorphévre, and E. Filippi, On the importance of the choice of the parameters of the johnson-cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model, Int J Mech Sci, vol.122, pp.143-55, 2017.

D. Umbrello, M. 'saoubi, R. Outeiro, and J. , The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel, Int J Mach Tools Manuf, vol.47, issue.3, pp.462-70, 2007.

Y. Zhang, T. Mabrouki, D. Nelias, C. Courbon, J. Rech et al., Cutting simulation capabilities based on crystal plasticity theory and discrete cohesive elements, J Mater Process Technol, vol.212, issue.4, pp.936-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00938429

D. Owen and M. Vaz, Computational techniques applied to high-speed machining under adiabatic strain localization conditions, Comput Methods Appl Mech Eng, vol.171, issue.3-4, pp.445-61, 1999.

J. Liu, Y. Bai, and C. Xu, Evaluation of ductile fracture models in finite element simulation of metal cutting processes, J Manuf Sci Eng, vol.136, p.11010, 2013.

Y. Bao and T. Wierzbicki, On the cut-off value of negative triaxiality for fracture, Eng Fract Mech, vol.72, issue.7, pp.1049-69, 2005.

Y. C. Zhang, T. Mabrouki, D. Nelias, and Y. D. Gong, Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach, Finite Elem Anal Des, vol.47, issue.7, pp.850-63, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00629449

M. Bäker, Finite element simulation of high-speed cutting forces, J Mater Process Technol, vol.176, issue.1, pp.117-143, 2006.

T. Mabrouki and J. Rigal, A contribution to a qualitative understanding of thermomechanical effects during chip formation in hard turning, J Mater Process Technol, vol.176, issue.1, pp.214-235, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00938632

Y. B. Guo, Q. Wen, and K. A. Woodbury, Dynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulations, J Manuf Sci Eng, vol.128, issue.3, pp.749-59, 2005.

H. B. Abdelali, C. Claudin, J. Rech, W. B. Salem, P. Kapsa et al., Experimental characterization of friction coefficient at the tool chip workpiece interface during dry cutting of aisi 1045, Tribology in Manufacturing Processes, 2012.

C. Bonnet, F. Valiorgue, J. Rech, and H. Hamdi, Improvement of the numerical modeling in orthogonal dry cutting of an AISI 316L stainless steel by the introduction of a new friction model, CIRP Journal of Manufacturing Science and Technology, vol.1, issue.2, p.85503, 2008.

T. Baizeau, S. Campocasso, G. Fromentin, and R. Besnard, Kinematic field measurements during orthogonal cutting tests via DIC with double-frame camera and pulsed laser lighting, Exp Mech, vol.2017, pp.581-91
URL : https://hal.archives-ouvertes.fr/hal-01597822

D. Zhang, X. Zhang, W. Xu, and H. Ding, Stress field analysis in orthogonal cutting process using digital image correlation technique, J Manuf Sci Eng, vol.139, issue.3, 2016.

D. Zhang, X. Zhang, and H. Ding, Hybrid digital image correlation-finite element modeling approach for modeling of orthogonal cutting process, J Manuf Sci Eng, vol.140, issue.4, 2018.

B. Davis, D. Dabrow, P. Ifju, G. Xiao, S. Y. Liang et al., Study of the shear strain and shear strain rate progression during titanium machining, J Manuf Sci Eng, vol.140, issue.5, 2018.

T. Baizeau, S. Campocasso, F. Rossi, G. Poulachon, and F. Hild, Cutting force sensor based on digital image correlation for segmented chip formation analysis, J Mater Process Technol, vol.238, pp.466-73, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01361336

R. V. Kazban, K. M. Vernaza-peña, and J. J. Mason, Measurements of forces and temperature fields in high-speed machining of 6061-t6 aluminum alloy, Exp Mech, vol.48, issue.3, pp.307-324, 2008.

D. Zhang, X. Zhang, and H. Ding, A study on the orthogonal cutting mechanism based on experimental determined displacement and temperature fields, 7th HPC 2016 -CIRP Conference on High Performance Cutting, vol.46, pp.35-43, 2016.

I. Arriola, E. Whitenton, J. Heigel, and P. Arrazola, Relationship between machinability index and in-process parameters during orthogonal cutting of steels, CIRP Ann, vol.60, issue.1, pp.93-99, 2011.

M. Harzallah, T. Pottier, R. Gilblas, Y. Landon, M. Mousseigne et al., A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale, Int J Mach Tools Manuf, pp.20-35, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737079

P. Vacher, S. Dumoulin, F. Morestin, and S. Mguil-touchal, Bidimensional strain measurement using digital images, Proc Inst Mech Eng Part C, vol.213, issue.8, pp.811-828, 1999.

B. Pan, W. Dafang, and X. Yong, Incremental calculation for large deformation measurement using reliability-guided digital image correlation, Computational Optical Measurement, vol.50, issue.4, pp.586-92, 2012.

D. Basak, R. A. Overfelt, and D. Wang, Measurement of specific heat capacity and electrical resistivity of industrial alloys using pulse heating techniques, Int J Thermophys, vol.24, issue.6, pp.1721-1754, 2003.

M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M. H. Nadal et al., Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int J Thermophys, vol.27, issue.2, pp.507-536, 2006.

M. Barge, H. Hamdi, J. Rech, and J. Bergheau, Numerical modelling of orthogonal cutting: influence of numerical parameters, Journal of Materials Processing Technology, 2005.

N. N. Zorev, Inter-relationship between shear processes occurring along tool face and on shear plane in metal cutting1963, vol.42

T. Childs, M. Mahdi, and G. Barrow, On the stress distribution between the chip and tool during metal turning, CIRP Ann, vol.38, issue.1, pp.62651-62652, 1989.

W. Grzesik, Experimental investigation of the influence of adhesion on the frictional conditions in the cutting process, Tribol Int, vol.32, issue.1, pp.15-23, 1999.

C. Courbon, F. Pusavec, F. Dumont, J. Rech, and J. Kopac, Tribological behaviour of Ti6Al4V and inconel718 under dry and cryogenic conditions application to the context of machining with carbide tools, Tribol Int, vol.66, pp.72-82, 2013.

F. P. Bowden and D. Tabor, The friction and lubrication of solids, Science, vol.113, p.443444, 1950.

J. Rech, P. Arrazola, C. Claudin, C. Courbon, F. Pusavec et al., Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting, CIRP Ann, vol.62, issue.1, pp.79-82, 2013.

H. Blok, Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions, Proc Inst Mech Eng, vol.2, p.222, 1937.

J. C. Jaeger, Moving sources of heat and the temperature of sliding contacts, J Proc Roy Soc New South Wales, vol.76, p.202, 1942.

J. G. Bauzin, N. Laraqi, and A. Baïri, Estimation of thermal contact parameters at the interface of two sliding bodies, J Phys, vol.135, p.12015, 2008.

J. Brocail, M. Watremez, and L. Dubar, Identification of a friction model for modelling of orthogonal cutting, Int J Mach Tools Manuf, vol.50, issue.9, pp.807-821, 2010.

P. Longére and A. Dragon, Thermodynamics based evaluation of the plastic work induced heating. consequences on the dynamic localization conditions2009, pp.1257-1262

H. L. Dorothy and P. Longére, Modelling of high strain rate adiabatic shear banding induced failure: a comparison of two approaches, Int J Impact Eng, vol.110, pp.219-246, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01950753

D. Macdougall and J. Harding, A constitutive relation and failure criterion for Ti6Al4V alloy at impact rates of strain, J Mech Phys Solids, vol.47, issue.5, pp.86-92, 1999.

J. S. Strenkowski, J. T. Carroll, and . Iii, A finite element model of orthogonal metal cutting, J Eng Ind, vol.107, issue.4, pp.349-54, 1985.

M. Calamaz, D. Coupard, and F. Girot, Numerical simulation of titanium alloy dry machining with a strain softening constitutive law, Mach Sci Technol, vol.14, issue.2, pp.244-57, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00911132

B. Zeramdini, C. Robert, G. Germain, and T. Pottier, Numerical simulation of metal forming processes with 3D adaptive remeshing strategy based on a posteriori error estimation, Int J Mater Form, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881339