Molecular actuators driven by cooperative spin-state switching - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2013

Molecular actuators driven by cooperative spin-state switching

Résumé

Molecular switches have great potential to convert different forms of energy into mechanical motion; however, their use is often limited by the narrow range of operating conditions. Here we report on the development of bilayer actuator devices using molecular spin crossover materials. Motion of the bilayer cantilever architecture results from the huge spontaneous strain accompanying the spin-state switching. The advantages of using spin crossover complexes here are substantial. The operating conditions used to switch the device can be manipulated through chemical modification, and there are many existing compounds to choose from. Spin crossover materials may be switched by diverse stimuli including light, temperature, pressure, guest molecules and magnetic field, allowing complex input combinations or highly specific operation. We demonstrate the versatility of this approach by fabricating actuators from four different spin crossover materials and by using both thermal variation and light to induce motion in a controlled direction.

Dates et versions

hal-02403440 , version 1 (10-12-2019)

Identifiants

Citer

Helena Shepherd, Il’ya A Gural'Skiy, Carlos M. Quintero, Simon Tricard, Lionel Salmon, et al.. Molecular actuators driven by cooperative spin-state switching. Nature Communications, 2013, 4 (1), ⟨10.1038/ncomms3607⟩. ⟨hal-02403440⟩
30 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More