High-efficiency cooling system for highly integrated power electronics for hybrid propulsion aircraft - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

High-efficiency cooling system for highly integrated power electronics for hybrid propulsion aircraft

Résumé

A study of high-performance power electronics and their associated high efficiency cooling system is proposed in this work. The purpose of the research is to find, design, study and optimize high-efficiency power electronics cooling system for a hybrid propulsion aircraft. The purpose is to find the most performing and efficient cooling system to allow power electronic converters to operate with the highest performances possible. After a study focused on the most suitable solutions, a passive capillary pumped system was retained because of its performances and energetic efficiency. Here, a study of this particular system is presented. The Capillary Pumped Loop for Integrated Power (CPLIP) or CPLTA (Capillary Pumped Loop for Terrestrial Applications) is introduced: numerical and experimental results are proposed to show the performances of this loop. It will be also shown that the loop is able to ensure the temperature requirements for power modules. After an introduction on this kind of cooling system and its working principles, the loop behavior will be experimentally studied while a finite volume solver will be used to obtain 3D temperature map of power converter modules. Other than the capability to ensure the temperature controllability, it will be shown how this loop is able to ensure and go beyond the required power coefficient to allow these systems to fly.

Domaines

Electronique
Fichier principal
Vignette du fichier
Accorinti_24286.pdf (1.44 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02417709 , version 1 (18-12-2019)

Identifiants

  • HAL Id : hal-02417709 , version 1
  • OATAO : 24286

Citer

Flavio Accorinti, Najoua Erroui, Vincent Ayel, Guillaume Gateau, Yves Bertin, et al.. High-efficiency cooling system for highly integrated power electronics for hybrid propulsion aircraft. 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Jun 2019, Vancouver, Canada. pp.870-877. ⟨hal-02417709⟩
158 Consultations
127 Téléchargements

Partager

Gmail Facebook X LinkedIn More