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Abstract

This paper proposes a model for incomplete-information games where the knowl-

edge of the players is represented by a Dempster-Shafer belief function. Beyond

an extension of the classical definitions, it shows such a game can be trans-

formed into an equivalent hypergraphical complete-information game (without

uncertainty), thus generalizing Howson and Rosenthal’s theorem to the frame-

work of belief functions and to any number of players. The complexity of this

transformation is finally studied and shown to be polynomial in the degree of

k-additivity of the mass function.

Keywords: Game theory, Incomplete-information games, Belief functions,

Choquet integrals

1. Introduction

Game theory [1, 2] proposes a powerful framework to capture decision prob-

lems involving several agents. In non-cooperative games of complete informa-

tion, the players do not coordinate their actions but each of them knows every-

thing about the game: the players, their available actions and all their utilities.5

This assumption of complete knowledge cannot always be satisfied. In the real

world indeed, players are not so well informed and have only limited knowledge
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about the game. This is why Bayesian games of incomplete information have

been proposed [3]. Nevertheless, the Bayesian hypothesis is strong, and requires

a good knowledge of the environment. For instance, in case of ignorance, the10

Bayesian way can lead to a model that does not fit with the agents’ behavior

(e.g., see Ellsberg’s paradox [4] or Von Mises’ wine/water paradox [5]).

In the present paper, we propose a new kind of game of incomplete informa-

tion, which we call a Bel game. Agents have a partial knowledge, represented

by a Dempster-Shafer belief function [6, 7], and cardinal utilities, but do not15

necessarily make the equiprobability assumption. The underlying decision rule

is generally the Choquet integral based on the Bel measure [8], which amounts

to the maximization of the worst expected utility [9, 10]. Bel games as defined

here are also compatible with the transferable belief model [11], which amounts

to extracting the pignisitic probability when the decision is to be made, and20

with Jaffray’s linear utility [12].

We then follow the line defined by Howson and Rosenthal [13] who have

shown that any 2-player Bayesian game can be transformed into a complete-

information polymatrix game [14]. In this paper, we show that such a trans-

formation is possible for Bel games, and for any number of agents, producing25

a hypergraphical game [15]. A notable consequence of this result is that the

algorithmics developed for hypergraphical games [16, 17] can be reused for the

search of Nash equilibria in Bel games.

2. Background and motivations

To illustrate and motivate our work, we will use the following example in-30

spired by the murder of Mr. Jones [11], where the suspects are Peter, Paul and

Mary.

Example 1 (Peter, Quentin and Rose). Two agents, named Agent 1 and

Agent 2, are independently looking for a business association, with either Peter

(P ), Quentin (Q), or Rose (R). The point is that a crime has been committed,35

for which these three people are suspected.

2



On the one hand, a classification algorithm was run on the surveillance video on

which the murderer appears, but the poor quality did not allow to obtain a better

result than the murderer has 50% chance to be a man, and 50% chance to be

a woman. On the other hand, the police investigation deduced, by elimination,40

that the only three suspects are P, Q and R.

As to the interest of the associations, making the deal with an innocent leads to a

payoff of $6k (to be shared between the people making the deal), while associating

with a guilty person produces no payoff ($0k).

Moreover, Agent 1 is investigating about P and will eventually know whether he45

is guilty or not. Similarly, Agent 2 will know if R is guilty before making the

decision.

The Bayesian approach is not appropriate here. Indeed, if Agent 1 learns

that P is innocent, the probability of guilt should become 1/2 for Q and 1/2

for R. However, in a purely Bayesian view, equiprobability would be applied50

and the prior probability of guilt would be 1/4 to P and 1/4 to Q. Then, after

conditioning, Agent 1 would assign a probability of 1/3 to Q and 2/3 to R.

2.1. Dempster-Shafer’s theory of evidence

Let us first look at the epistemic aspect of the problem. The prior knowl-

edge is simply that P ({P,Q}) = P ({M}) = 1
2 , and nothing more. The kind55

of knowledge at work here is well captured by Dempster-Shafer’s theory of evi-

dence, which does not restrict probability assignments to elements of the frame

of discernment:

Definition 1 (Mass function). A mass function for a frame of discernment

Ω (or “bpa” for basic probability assignment) is a function m : 2Ω → [0, 1] such60

that m(∅) = 0 and
∑

A⊆Ω m(A) = 1.

A set with a nonzero mass is called a focal element and the set of focal

elements is denoted Sm. Two dual measures on 2Ω derive from m:

Bel(A) =
∑

B∈Sm,B⊆A

m(B) and Pl(A) =
∑

B∈Sm,B∩A̸=∅

m(B).
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Bel(A) (resp. Pl(A)) estimates to what extent A is implied by (resp. is com-

patible with) the knowledge captured by m. Since a belief function is directly

encoded by its mass function, its spatial complexity is the number of focal ele-

ments: Size(m) = |Sm|.65

Probabilities correspond to the special case of belief functions where mass

functions are 1-additive: the focal elements are singletons. k-additivity is more

generally defined as follows:

Definition 2 (k-additivity). A mass function whose largest focal element is

of size k is said to be k-additive, i.e., k = maxB∈Sm
|B|.70

Probability theory is recovered as a special case when the available infor-

mation is uncertain, but precise. On the contrary, when there is only one focal

element B, i.e., when the belief function describes a piece of evidence that tells

us that ω is in B for sure, and nothing more, the information is certain but im-

precise. Following this interpretation, the mass function is seen as a generalized75

set [18].

Belief function can alternatively be understood as a particular case of im-

precise probability theory. A belief function Bel and its dual Pl indeed delimit

the lower and upper bounds of a probability family F = {Pr | ∀A,Bel(A) ≤

Pr(A) ≤ Pl(A)} – F is called the credal set of m. Since this set is defined80

by linear constraints, it is convex, i.e., any element of F can be obtained by

distributing each mass m(B) among the elements of B. But on the other side,

not any probability family is bound by a belief function and its dual [19].

Example 2 (Belief function modelling). In Example 1, there are three pos-

sible “states of the world”: one for each potential murderer. So, Ω = {P,Q,R}.85

The knowledge at work here says that there is 50% chance that the murderer

is a man (thus, P or Q), and that there is 50% chance that the murderer is a

woman (thus, R).

• In the evidential interpretation: this knowledge is directly captured by the

mass function m: m({R}) = 0.5; m({P,Q}) = 0.5 (cf. Figure 1).90
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R

Q

P

m = 0.5

m = 0.5

Figure 1: Example 1’s prior knowledge expressed by a mass function; circles denote focal

elements

• In the credal interpretation: m, as well as Bel and Pl, are just tools to

delimit the probability family F = {Pr | Pr({P,Q}) = 0.5 ∧ Pr({R}) =

0.5}.

In this toy example, the belief function arises by mixing variability and igno-

rance (the probabilistic 50-50 result and the logical result of having those three95

suspects). Belief functions also arise in data-driven approaches: yielded by sta-

tistical inference Belief functions also arise in data-driven approaches: yielded

by statistical inference [6, 20, 21] or by belief-function-based algorithms [22].

2.2. Decision making with belief functions

Let us now consider belief functions in a (mono-agent) decision making con-100

text. A common setting in decision theory is to consider that a decision (or

“action”) is a function a : Ω → X where Ω is the set of possible states, as

previously, and X is the set of possible outcomes. The preferences of an agent

are represented by an utility function u : X → R. As soon as the global prefer-

ence of the decision maker is supposed to be complete and transitive, it can be105

captured by an aggregated utility – the higher the global utility of an action,

the more the decision maker prefers this action (the reader shall refer to [23] for

a survey of decision making with belief functions). In the following, we consider

three aggregation functions that generalize expected utility to belief functions,

yielding a complete order over the decision maker’s preferences.110

The multi prior model and the discrete Choquet integral

A belief function Bel and its dual Pl delimit the lower and upper bounds of a

probability family F = {Pr | ∀A,Bel(A) ≤ Pr(A) ≤ Pl(A)}, and thus, for each
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decision, a full range of values for its expected utility. Gilboa and Schmeidler

[10, 9] consider a pessimistic agent and propose to evaluate each decision by the115

minimum of its possible expected utilities.

Definition 3 (MPEU). MPEU(a) = minPr∈F (
∑

ω Pr(ω).u(a(ω)))

Another line of thought is to consider that belief functions are particular

capacity measures, and to compute the global merit of an act on the basis of its

Choquet value (for a theoretical justification of the use of Choquet integral in120

decision making under (non-probabilitistic) uncertainty, see [24, 25]). When the

capacity is a belief function, the Choquet expectation can be written as follows.

Definition 4 (Choquet expected utility (CEU)). Let Λ(a) = {λ1 ≤ · · · ≤

λ|Λ(a)|} be the set of utility values reached by an action a, labelled by increasing

order, and Eλi(a) = {ω | u(a(ω)) ≥ λi} denote the set of worlds for which the

utility of action a is at least λi. The Choquet Expected Utility of a is:

CEU(a) = λ1 +

|Λ(a)|∑
i=2

(λi − λi−1)× Bel(Eλi(a)).

The CEU has a simple expression in terms of the mass function:

CEU(a) =
∑

B∈Sm

m(B)×min
ω∈B

u(a(ω)).

Example 3 (Choquet expected utility). Consider a decision situation much

simpler than that of Example 1: there is only one agent who chooses a partner

without any investigation. In this case, the agent chooses to partner with either125

Peter, Quentin or Rose, depending only on the knowledge that men, like women,

have a 50% chance of being the murderer, i.e., m
(
{ωP , ωQ}

)
= m

(
{ωR}

)
= 1

2 .

The CEU function of the different possible actions is:

CEU(P ) =
1

2
×min

(
u(P, ωP ), u(P, ωQ)

)
+

1

2
×min

(
u(P, ωR)

)
= 1.5

CEU(Q) =
1

2
×min

(
u(Q,ωP ), u(Q,ωQ)

)
+

1

2
×min

(
u(Q,ωR)

)
= 1.5

CEU(R) =
1

2
×min

(
u(R,ωP ), u(R,ωQ)

)
+

1

2
×min

(
u(R,ωR)

)
= 1.5
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Since CEU(P ) = CEU(Q) = CEU(R), the agent is indifferent w.r.t. the possible

partners: they consider indeed that every potential partner has 50% chance of

being the murderer, which amounts to the worst case scenario for each choice.130

Gilboa and Schmeidler [26] have shown that the MPEU value of a decision is

equal to its CEU value when the imprecise probability yields a belief function.

We recover here the double interpretation of belief functions, in terms of gener-

alized set or in terms of imprecise probability. It should nevertheless be recalled

that they do differ, especially in a dynamic context, where a conditioning must135

be applied.

For the sake of completeness, let us remark that the Choquet expectation could

be defined w.r.t the plausibility measure in the former equation of Definition

4, which then amounts to considering the max operator in the latter equation.

This would capture the behaviour of an optimistic agent, and coincides with the140

maximum of possible expected utility in the multi prior model.

Jaffray’s expected utility (JEU)

Jaffray’s [12] expected utility (JEU) is defined directly in terms of the mass

function, and generalizes the CEU by allowing one to modulate the agent’s

pessimism locally, using a series of Hurwicz coefficients. Denoeux and Shenoy

also provide an axiomatic justification for Jaffray’s linear utility (and for an even

more general notion of it) in the Dempster-Shafer theory, i.e., for the evidential

interpretation [27].

JEU(a) =
∑

B∈Sm

m(B)×
(
αB∗(a),B∗(a) ×B∗(a) + (1− αB∗(a),B∗(a))×B∗(a)

)
where B∗(a) = minω∈B u(a(ω)) and B∗(a) = maxω∈B u(a(ω)).

The αxi,xj coefficients represent the agent’s pessimism and have to be elicited

for each pair (xi, xj) with i < j; there is a quadratic number of such pairs (w.r.t.145

the possible utility values). Note that JEU = CEU if all coefficients αxi,xj
are

equal to 1. If all coefficients are equal to 0, it coincides with the CEU w.r.t. the

plausibility measure.
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The transferable belief model (TBEU)

This model, due to Smets and Kennes [11], proceeds in two steps: at the150

credal level, knowledge is represented by a belief function and revised by Demp-

ster’s rule of conditioning; at the pignistic level (when a decision takes place),

a probability law named BetP is constructed: BetP(ω) =
∑

ω∈B∈Sm
m(B)/|B|

(which amounts to the Shapley power index computed for the game represented

by Bel [28]). The agent then maximizes his expected utility with regards to155

BetP.

2.3. Knowledge revision with belief functions

The classical probabilistic conditioning makes it possible to revise knowledge

expressed by a probability measure. In the context of this paper, we simply need

to recall that if Pr : 2Ω → [0, 1] is a probability measure whose distribution is160

p : Ω → [0, 1], then p(ω | C) = p(ω)/Pr(C) if ω ∈ C and 0 otherwise. It means

that when learning that event C holds, one only considers the chances that were

assigned to elements ω ∈ C – up to a normalization by Pr(C).

The evidential and the credal views of belief functions lead to different gen-

eralizations of the probabilistic conditioning [29, 30]. In a pure DS theory, in165

the conditioning of m by C, the mass assigned to a focal set B is transferred to

their non-empty intersection. The conditioning at work here is Dempster’s rule

[6] (see [31] for more details):

Definition 5 (Dempster conditioning). For any nonempty A,C ⊆ Ω, with

Pl(C) > 0 (at least one focal element intersects C),

mDem
|C (A) := KC ·

∑
B∈Sm
C∩B=A

m(B),

where KC = 1/Pl(C) is a normalization factor, constant for a given subset

C ⊆ Ω.170

Masses of mDem
|C can be computed using a simple algorithm. The mass m(B)

of any focal element B ∈ Sm is transferred to the subset B∩C if it is nonempty,
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and discarded otherwise. Thus all masses of mDem
|C can be computed through a

single loop over Sm, followed by a normalization, in linear time w.r.t. the size

of m.175

It is worthwhile noticing that Demspter conditioning preserves the size and

the k-additivity of m: |Sm| ≥ |SmDem
|C

| and if m is k-additive, then mDem
|C is at

most k-additive

Example 4 (Dempster conditioning). The conditioning at work in our run-

ning example is Dempster conditioning. Let us say that ω∗ denote the ac-180

tual state of the world, which agents don’t know. Now, consider the case of

Agent 1 learning that Peter is not the murderer: Agent 1 learns that ω∗ /∈

{P}, i.e. ω∗ ∈ {Q,R}. In this case, the evidence concerning men now only

concerns Quentin, so from the viewpoint of Agent 1, the knowledge becomes

mDem
|{Q,R}({Q}) = mDem

|{Q,R}({R}) = 0.5 (Figure 2, center, the mass assigned to185

{P,Q} was transferred to {P,Q} ∩ {Q,R} = {Q}). On the contrary, now

consider that Agent 2 learns that Rose is not the murderer: Agent 2 learns

ω∗ /∈ {R}, i.e. ω∗ ∈ {P,Q}. In this case, the mass concerning women has to

be discarded, so the knowledge becomes mDem
|P,Q({P,Q}) = 1 (Figure 2, right, the

mass assigned to {R} was discarded since {R} ∩ {P,Q} = ∅).190

R
Q

P

m = 0.5

m = 0.5

R
Q

P

m = 0.5

m = 0.5

R
Q

Pm = 1

Figure 2: Prior knowledge (left) and revised knowledge given {Q,R} (center) and given {P,Q}

(right). White and gray areas denote possible and impossible events – circles denote focal

elements.

On the contrary, The Fagin-Halpern conditioning [32] derives from the in-

terpretation of belief functions in the theory of imprecise probabilities.

Definition 6 (Fagin-Halpern conditioning). For any non-empty C with

Bel(C) > 0 (i.e. at least one focal element is included in C),
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Bel(A|C) = inf
Pr∈Fm

Pr(A|C) =
Bel(A ∩ C)

Bel(A ∩ C) + Pl(Ā ∩ C)

Fagin and Halpern [32] have shown that the above-defined measure is a Bel195

measure. The number of focal elements of mFH
|C may be much greater than

the number of focal elements of the original Bel and the FH conditioning does

not preserve nor the size, neither the k-additivity of the mass function2. FH

conditioning does not benefit low degrees of k-additivity, however computing

mFH
|C ’s values had been shown possible in O(2|Ω|) by Polpitiya et al. [33].200

Gong and Meng [34] show that there is a range of conditionings from which

Fagin-Halpern’s and Dempster’s conditioning are the two extremes. To com-

plete the picture, let us cite two alternative rules of conditioning proposed for

the credal interpretation, the Strong conditioning [7, 18, 35, 34], also called “ge-

ometrical conditioning”, which amounts to applying Jeffrey’s rule when learning205

the categorical mass function m′ such that m′(C) = 1 and the weak con-

ditioning [36], seldom used because leading to strange results (for example

BelWeak(C | C) = Bel(C)/Pl(C) ≤ 1).

mStrong
|C (B) =

m(B)/Bel(C) if B ⊆ C

0 otherwise

mWeak
|C (B) =

m(B)/Pl(C) if B ∩ C ̸= ∅

0 otherwise

Like Dempster conditioning, both strong and weak conditioning are linear

in the size of the original bpa and preserve the k-additivity.210

2Consider for instance a frame of discernment Ω = {ω1, . . . , ωm} and a 2-additive mass

function m such that m({ωi}) > 0 for all i and m({ωi, ωj}) > 0 for all i ̸= j. Then, for any

nonempty C ⊂ Ω, each subset of B ⊆ C is a focal element of Bel(· | C) – thus |SmFH
|C

| = 2|C|

and Bel(· | C) is |C|-additive.
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2.4. Game theory

A simultaneous (or strategic) game of complete information models a situ-

ation where each agent makes a decision (the term “action” is rather used in

game theory) without coordination with the other agents – and the final utility

of each agent depends on the actions chosen by all agents.215

Definition 7 (Complete-information game).

A simultaneous game of complete information (also called complete-information

game) is a tuple G =
(
N, (Ai)i∈N , (ui)i∈N

)
where:

• N = {1, . . . , n} is a finite set of agents (or “players”),220

• Ai is the finite set of actions of Agent i; the set A :=
∏

i∈N Ai contains

all the possible combinations of actions a.k.a. “profiles”,

• ui : A → R is the utility function of Agent i.

A mixed strategy for player i is a probability distribution on Ai. The strategy

is said to be pure when only one action receives a non-zero probability.225

A pure (resp. mixed) strategy profile is a vector p = (p1, . . . , pn) which assigns

a pure (resp. mixed) strategy for each player.

The game is said to be in standard normal form (SNF) iff the utility functions

are given by tables.230

In the following, we will use the following notations: for any vector v =

(v1, . . . , vn) in some product domain V =
∏

i∈N Vi and for any e ⊆ N , ve is the

restriction of v to e and Ve =
∏

i∈e Vi. By abuse of notation, we write vi for v{i}.

For any i, −i denotes the set N \ {i}, i.e. v−i = (v1, . . . , vi−1, vi+1, . . . , vn) ∈

V−i =
∏

j ̸=i Vj . Thus, v−i is the restriction of v to all players but i. Finally, “.”235

denotes the concatenation, e.g., v′i.v−i = (v1, . . . , vi−1, v
′
i, vi+1, . . . , vn). Hence

a = ai.a−i belongs to A and given two profiles a, a′ ∈ A, a′i.a−i denotes the

profile a where ai is replaced with a′i.
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Example 5 (Complete-information game). Let us consider the following

variant of the decision situation of Example 1: suppose that it is known by all240

agents that Peter is the murderer. Thus, agents will not earn anything if they

choose Peter as a partner, and may earn $2k or $3k by choosing Quentin or

Rose as a partner, depending on the other agent’s choice. This situation can be

fully described by the complete-information game G =
(
N, (Ai, ui)i∈N

)
where:

• N = {1, 2} is the set of agents245

• Ai = {Pi, Qi, Ri} is the set of Agent i’s actions

• ui : A1×A2 → R is the utility function of Agent i, whose values are given

in Table 1.

P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3)

Q1 (3, 0) (2, 2) (3, 3)

R1 (3, 0) (3, 3) (2, 2)

Table 1: Utility matrix of Example 5’s complete-information game. The tuple at the inter-

section of row a1 and column a2 denotes
(
u1(a1, a2), u2(a1, a2)

)

Because the strategies can be randomized, the global utility for a player of a

mixed strategy profile p is defined as the expected utility (EU) of ui according250

to the probability distribution it induces over A (obviously, when the strategy

is pure, EUi is equal to the utility value given by ui):

Definition 8 (Utility of a strategy). Given a strategy profile p in a complete-

information game
(
N, (Ai)i∈N , (ui)i∈N

)
, the expected utility of player i is de-

fined by:

EUi(p) =
∑
a∈A

∏
j∈N

pj(aj)

× ui(a).

Nash equilibria are the strategy profiles where no agent can have an increase

in utility by switching to another strategy:

12



Definition 9 (Nash equilibrium [2]). A strategy profile p is a Nash equilib-255

rium iff for any i ∈ N , there exists no p′i such that EUi(p
′
i.p−i) > EUi(p).

Example 6 (Strategy profile and Nash equilibrium). Consider Example

5’s complete-information game.

• The vector a = (R1, Q2) ∈ A is a pure strategy profile, assigning a pure

strategy to each agent. It is a Nash equilibrium since no agent has any260

incentive to deviate unilaterally. Indeed, a change of strategy for an agent

would lead to a loss for this agent (a payoff of $0 or $2k instead of $3k).

On the contrary, the pure strategy profile a′ = (P1, Q2) is not a Nash

equilibrium since Agent 1 prefers to move from P1 to R1 when Agent 2

plays Q2.265

• The vector p =
(
(Q1/0.5, R1/0.5) , (Q2/0.5, R2/0.5)

)
is a mixed strat-

egy profile, where (Q1/0.5, R1/0.5) denote the mixed strategy of Agent 1,

assigning a probability of 0.5 to actions Q1 and R1 – and likewise for

(Q2/0.5, R2/0.5) for Agent 2. Agent 1’s expected utility for p is:

EU1(p) = 0.25 × u1(Q1, Q2) + 0.25 × u1(Q1, R2) + 0.25 × u1(R1, Q2) +270

0.25× u1(R1, R2) = 2.5.

Similarly, EU2(p) = 2.5. p is a mixed Nash equilibrium, since switching

one’s strategy cannot yield more than an expected utility of 2.5.

• It can also be noted that a = (R1, Q2) is also a mixed strategy profile,

where Agent 1 assigns probability 1 to R1 and Agent 2 probability 1 to Q2.275

When the utility functions are described in an explicit way, G is said to be

in standard normal form (SNF). SNF representations become spatially costly

when the number of players increases (O(nαn) for a game with n players and

α actions per player). More succinct forms have been proposed, that suit cases

where utility functions can be decomposed as a sum of smaller utility functions,280

namely hypergraphical games [15] and their particular cases, polymatrix games

[14] and graphical games [37].
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Definition 10 (Hypergraphical game, polymatrix game).

A hypergraphical game is a tuple G =
(
N,E, (Ai)i∈N , (ue

i )e∈E,i∈e

)
where:

• N is a set of players,285

• E = {e1, . . . em} is a multiset of subsets of N ((N,E) is a hypergraph)

• For each e ∈ E,
(
e, (Ai)i∈e, (u

e
i )i∈e

)
is a complete-information game.

The global utility of each Agent i sums the local utilities: ui(a) =
∑

e∈E ue
i (ae).

A polymatrix game is a hypergraphical game with 2-player local games:

∀e ∈ E, |e| = 2.290

Any hypergraphical game
(
N,E, (Ai)i∈N , (ue

i )e∈E,i∈e

)
is a complete-information

game – it is a succinct representation of the SNF game
(
N, (Ai, ui)i∈N

)
where

ui denotes the global utility of Agent i; conversely any complete-information

game in SNF can be described at least by the trivial hypergraphical game(
N, {N}, (Ai)i∈N , (uN

i )i∈N

)
, in which there is only one local game involving295

all players.

These frameworks assume that each player knows everything about the

game: the players, the actions available to each player, all their utilities for

each combination of actions, etc. The assumption of complete knowledge can-

not always be satisfied. In the real world indeed, players have only a limited300

knowledge about the outcomes of their strategies – the final outcomes may de-

pend on an ill-known event (in Example 1, the payoff for making the deal with

one of P , Q, or R depends on whether they are guilty or innocent).

Harsanyi [3] proposed games of incomplete information as a way to capture

problems pervaded with a probabilistic uncertainty (see also [38], for more de-305

tails). A game of incomplete information can be first understood as a set of

possible classical games (of complete information) – one for each possible world

ω ∈ Ω. Players don’t know exactly which world is the real one, but may have

some knowledge about it. Harsanyi extends the framework to the dynamical

case, considering that just before playing, each player i will receive some infor-310

mation τi(ω
∗) about the real world ω∗. τi maps any world to an element θi of a
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set Θi called the set of “types” of Agent i. After having observed τi(ω
∗), Agent i

knows more about the real game, but several games may still be plausible. The

player then conditions the prior knowledge on τi(ω
∗) and decides which action to

play. Notice that the different agents may receive different pieces of information315

and thus have a different posterior knowledge. The question is then, for each

player, to determine a strategy (either an action, or a probabilistic strategy) for

each possible type.

Harsanyi has shown that such games can be described on the space of types

Θ = Θ1 × · · · × Θn (the underlying worlds are omitted). The idea of Harsanyi320

when defining types is that this concept can encapsulate every piece of informa-

tion agents may have access to. It includes the agent-observable world status,

but also their beliefs on other agents and their introspective mental states.

However, incomplete-information games, as defined by Harsanyi, hold only

for the probabilistic approach, hence the name Bayesian game. That is, Bayesian325

games can only model decision situations under risk – i.e. where the probability

law is perfectly known, which is a strong hypothesis that cannot always be sat-

isfied. As for our running example, we aim at modeling such decision situations

with a partial knowledge, represented by belief functions.

3. Bel games330

Let us first consider the static decision problem when agents don’t acquire

any piece of information – in our example, agents do not investigate on Peter

nor on Rose: they will choose a partner considering the prior knowledge only.

The agents play a complete-information game, but this complete-information

game is ill-known: there are several possible such games, one for each possible335

state of the world – and a common belief function describes the knowledge of

the agents. All agents aim to maximize their CEU (resp. JEU or TBEU).

This kind of situation can easily be reduced to a single complete-information

game, where agents’ utility functions assign the CEU value (resp. JEU or TBEU

value) to each action profile.340
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Example 7 (Static incomplete-information game). Consider the situation

described in Example 1, but suppose that agents are not investigating either Pe-

ter or Rose: they will choose a partner based only on prior knowledge. There are

three possible complete-information games, one for each ω ∈ Ω – these games,

GP , GQ and GR are listed in Table 2.345

GP GQ GR

P2 Q2 R2 P2 Q2 R2 P2 Q2 R2

P1 (0, 0) (0, 3) (0, 3) P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)

Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 3) (0, 0) (0, 3) Q1 (3, 3) (2, 2) (3, 0)

R1 (3, 0) (3, 3) (2, 2) R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Table 2: Three possible complete-information games Gω , depending on the actual state of the

world ω ∈ {ωP , ωQ, ωR}.

Consider the strategy where Agent 1 chooses to partner with Peter, while

Agent 2 chooses to partner with Rose. In this case, the CEU value for Agent 1

is:

CEU1(P1, R2) =
1

2
×min

(
uP
1 (P1, R2), u

Q
1 (P1, R2)

)
+

1

2
× uR

1 (P1, R2) = 1.5

The CEU value computed for each pure strategy is given by Table 3. This table

directly defines a complete-information game – in other terms, in static problems

where the agents maximize their CEU without getting any new information are

perfectly captured by a complete-information game. The same reasoning can be

made considering the JEU value and the TBEU value.

P2 Q2 R2

P1 (1, 1) ( 32 ,
3
2 ) ( 32 ,

3
2 )

Q1 ( 32 ,
3
2 ) (1, 1) ( 32 ,

3
2 )

R1 ( 32 ,
3
2 ) ( 32 ,

3
2 ) (1, 1)

Table 3: The complete information game capturing the incomplete-information static problem

of Example 7 (CEU maximization)

350
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3.1. Bel games

In the general case, agents can learn information. Such problems cannot

be reduced to a complete game where the utility values are the CEU values.

Each agent may indeed make a different decision, depending on the private

information received (depending on the ”type” received).355

Bayesian games are games of incomplete information where prior knowledge

is captured by a probability measure. To capture problems where the Bayesian

assumption is not appropriate (as in our motivating example), we propose the

more general framework of Bel games:

Definition 11 (Bel game). A simultaneous (or strategic) Bel game G is de-360

fined as a tuple
(
N, (Ai)i∈N , (Θi)i∈N , (ui)i∈N ,m

)
where:

• N = {1, . . . , n} is a finite set of players,

• Ai is the finite set of actions of player i; A =
∏

i∈N Ai denotes the set of

all action profiles,

• Θi is the finite set of types of player i; Θ =
∏

i∈N Θi denotes the set of365

all type configurations,

• m : 2Θ → [0, 1] is the mass function describing the common prior knowl-

edge,

• ui : A×Θ → R is the utility function of Agent i.

G is said to be in standard normal form (SNF) iff the values of utility functions370

ui and those of the mass function m are given in tables.

Bel games generalize Bayesian games, which are recovered when m is a proba-

bility distribution.

Proposition 1 (Size of a Bel game). A Bel game in SNF has a spatial com-

plexity in O
(
n(αβ)n+kn Size(m)

)
, where α = maxi∈N |Ai| and β = maxi∈N |Θi|.375
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Proof. See Proof 13 in Appendix.

Example 8. We are now equipped to fully capture the problem described by

Example 1, namely by a Bel game G =
(
N, (Ai)i∈N (Θi)i∈N , (ui)i∈N ,m

)
where:

• N = {1, 2};

• A1 = {P1, Q1, R1}, A2 = {P2, Q2, R2} (each agent chooses an associate).380

• Θ1 = {P, P̄}, Θ2 = {R, R̄} (Agent 1 investigates on Peter, Agent 2 investi-

gates on Rose).

• m : 2Θ → [0, 1] has two focal elements: m
(
{(P̄, R)}

)
= 1/2 (the murderer

is a woman, thus necessarily Rose – in this case Agent 1 will learn P̄ and

Agent 2 will learn R) and m
(
{(P, R̄), (P̄, R̄)}

)
= 1/2 (the murderer is a385

man: Agent 2 necessarily learns R̄ but Agent 1 can learn either P̄ – which

happens when Quentin is the murderer – or P – Peter is the murderer).

• Making a deal with a murderer has a utility value of 0, making a deal with

an innocent leads to a utility of 6
2 = 3, unless the other agent approaches

the same associate, in which case each agent receives 6
3 = 2. The utility390

functions depend on the configuration of types – they are summarized in

Table 4. There are only three possible type configurations, (P̄, R̄), (P, R̄)

and (P̄, R). The case where θ = (P, R) (both R and P are guilty) is not a

possible world – null values (in gray) are given this configuration.

Following Harsyani’s approach of incomplete-information games, we consider395

the “ex interim” setting where each player plans a strategy for each of the

types he/she can receive. We thus adopt the definition of strategy proposed by

Harsyani’s in the general context of incomplete-information games:

Definition 12 (Pure and mixed strategies [3]). A pure (resp. mixed) strat-

egy for player i in a Bel game is a function ρi which maps each “type” θi ∈ Θi400

to an action of (resp. a probability over) Ai.
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θ2 = R̄ θ2 = R

P2 Q2 R2 P2 Q2 R2

θ1 = P

P1 (0, 0) (0, 3) (0, 3) P1 (0, 0) (0, 0) (0, 0)

Q1 (3, 0) (2, 2) (3, 3) Q1 (0, 0) (0, 0) (0, 0)

R1 (3, 0) (3, 3) (2, 2) R1 (0, 0) (0, 0) (0, 0)

P2 Q2 R2 P2 Q2 R2

θ1 = P̄

P1 (2, 2) (3, 0) (3, 3) P1 (2, 2) (3, 3) (3, 0)

Q1 (0, 3) (0, 0) (0, 3) Q1 (3, 3) (2, 2) (3, 0)

R1 (3, 3) (3, 0) (2, 2) R1 (0, 3) (0, 3) (0, 0)

Table 4: Example 8: Utility matrices for each configuration of the types.

A pure (resp. mixed) strategy profile is a vector p = (p1, . . . , pn) which

assigns a pure (resp. mixed) strategy for each player.

ρ(θ) =
(
ρ1(θ1), . . . , ρn(θn)

)
denotes the profile which will be played if the

configuration of types is θ.405

The set of all pure strategy profiles is denoted Σ =
∏

i∈N (Θi → Ai).

Example 9 (Pure strategy). In our running example,

• ρ1 : Θ1 → A1, defined by ρ1(P) = R1 and ρ1(P̄) = P1 is a pure strategy

of Agent 1; in this strategy Agent 1 will choose Rose when learning that

Peter is the murderer, and choose Quentin otherwise.410

• ρ2 : Θ2 → A2, defined by ρ2(R) = Q2 and ρ2(R̄) = R2 is a pure strategy of

Agent 2; in this strategy Agent 2 will choose Quentin when learning that

Rose is the murderer, and choose Rose otherwise.

• ρ = (ρ1, ρ2) is a pure strategy profile, and ρ(P, R̄) = (R1, R2) is the action

profile that will actually be played if Peter is the murderer (i.e., when415

Agent 1 learns P and Agent 2 learns R̄).

In the ex interim approach of incomplete-information games, when receiving
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the type θi, Agent i revises the prior knowledge – in a Bel game, Agent i’s

posterior knowledge over the joint types’ configuration is m|θi .

Let us first consider the case where the agents maximize their Choquet420

utility (this approach being compatible with both the evidential and the credal

interpretation of belief functions). In this case the utility of a pure strategy

profile for Agent i of type θi, shall thus be defined as:

Definition 13 (Choquet Expected Utility of a pure strategy profile).

The utility of a pure strategy profile ρ = (ρ1, . . . , ρn), for Agent i of type θi, is:425

CEU(i,θi)(ρ) =
∑

B∈Sm|θi
m|θi(B)×minθ′∈B ui(ρ(θ

′), θ′).

where m|θi denotes the conditioning that is compatible with the interpretation

of the belief function (e.g., Demspter’s conditioning or Fagin–Halpern’s one).

Let us now consider mixed strategies. A mixed strategy profile ρ defines

a probability distribution Prρ(σ) =
∏

i∈N

∏
θi∈Θi

ρi(θi)(σi(θi)) over the set Σ430

of pure strategy profiles. If we now merge Prρ with m, we get a bpa mρ over

A × Θ: to any element X = {(a, θ), (a′, θ′), . . . } ⊆ A × Θ correspond both a

set of type configurations BX := {θ | (a, θ) ∈ X} ⊆ Θ and a set of compatible

pure strategy profiles SX := {σ | ∀(a, θ) ∈ X, σ(θ) = a} ⊆ Σ. The mass of

X is mρ(X) = m(BX) ×
∑

σ∈SX
Prρ(σ), that is, X is focal if BX is focal and435

some compatible pure strategy profiles are possible. Finally, Agent i receiving

type θi conditions the prior knowledge which becomes mρ
|θi . Hence the following

definition of the utility of a mixed strategy profile:

Definition 14 (Choquet Expected Utility of a mixed strategy profile).

The utility of a mixed strategy profile ρ = (ρ1, . . . , ρn), for player i of type θi,

is:

CEU(i,θi)(ρ) =
∑
σ∈Σ

Prρ(σ)×
∑

B∈Sm|θi

m|θi(B)× min
θ′∈B

ui

(
σ(θ′), θ′

)
where Prρ(σ) =

∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

Proof (Proof of correctness). See Proof 1 in Appendix.440
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It can be checked that Definition 14 amounts to Definition 13 when ρ is a

pure strategy profile.

Now, recall that a strategy is a Nash equilibrium iff no agent can have an

increase in utility by switching to another strategy. This concept straightfor-

wardly extends to Bel games:445

Definition 15 (Nash equilibrium). A mixed (resp. pure) strategy profile ρ

is a Nash equilibrium for CEU iff, whatever (i, θi), there exists no mixed (resp.

pure) strategy ρ′i such that CEU(i,θi)(ρ
′
i.ρ−i) > CEU(i,θi)(ρ).

Example 10. Let ρ be the pure strategy defined in Example 9: Agent 1 makes

the deal with R when learning that P is guilty and with P otherwise, and Agent 2450

joins Q when learning that R is guilty and R otherwise:

ρ1(P) = R1, ρ1(P̄) = P1, ρ2(R) = Q2 and ρ2(R̄) = R2.

As usual with this “Peter, Paul and Mary” example, the Demspter rule of con-

ditioning is used.

• Consider Agent 1 receiving type P: the conditioned bpa, mDem
|P , has only455

one focal element {(P, R̄)}, KP = 1/ 1
2 and mDem

|P ({(P, R̄)}) = 1. In short,

Agent 1 knows that P is guilty and R is not. In the only possible config-

uration (P, R̄), ρ prescribes ρ1(P) = R1 for Agent 1 and ρ2(R̄) = R2 for

Agent 2. Then,

CEU(1,P)(ρ) = mDem
|P

(
{(P, R̄)}

)
× u1

(
(R1, R2), (P, R̄)

)
= 1× 2 = 2.460

• Consider now Agent 1 receiving P̄: revised knowledge, mDem
|P̄ , has two focal

elements, {(P̄, R)} and {(P̄, R̄)} (each with probability 1
2 , thus KP̄ = 1).

The strategy prescribes ρ(P̄) = P1 for Agent 1, who doesn’t know whether

Agent 2 learns R (and plays ρ(R) = Q2) or R̄ (and plays ρ(R̄) = R2). Hence

CEU(1,P̄)(ρ) =
1
2 × u1

(
(P1, R2), (P̄, R̄)

)
+ 1

2 × u1

(
(P1, Q2), (P̄, R)

)
= 3465

• Similarly, the bpa of Agent 2 receiving R, mDem
|R , has only one focal ele-

ment, {(P̄, R)} (thus KR = 1/ 1
2) in which ρ prescribes P1 for Agent 1 and

Q2 for Agent 2. Then

CEU(2,R)(ρ) = 1× u2

(
(P1, R2), (P̄, R)

)
= 1× 3 = 3.
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• Finally, the bpa of Agent 2 receiving R, mDem
|R̄ , has one focal element,470

{(P̄.R̄), (P.R̄)} and KR̄ = 1/ 1
2 . Agent 2 does not know whether Agent 1

receives P̄ or P. Since ρ prescribes Agent 1 to play P1 in the first case, R1

in the second one and prescribes Agent 2 to play R2 in both cases,

CEU(2,R̄)(ρ) = 1×min
[
u2

(
(P1, R2), (P̄, R̄)

)
, u2

(
(R1, R2), (P, R̄)

)]
= 1×min(3, 2) = 2.475

In this strategy, Agent 1 does not give the best possible response to Agent 2’s

strategy: when learning that P is guilty, Agent 1 plays R1 while knowing that

in this case Agent 2 learns R̄ and thus plays R2. Let Agent 1 make a change of

strategy and play Q1 when learning P – hence the strategy ρ′:

ρ′1(P) = Q1, ρ
′
1(P̄) = P1, ρ

′
2(R) = Q2, ρ

′
2(R̄) = R2.480

• CEU(1,P)(ρ
′) = KP × u1

(
(Q1, R2), (P, R̄)

)
= 1× 3 = 3,

• CEU(1,P̄)(ρ
′) = KP̄ × u1

(
(P1, R2), (P̄, R̄)

)
+KP̄ × u1

(
(P1, Q2), (P̄, R)

)
= 3,

• CEU(2,R)(ρ
′) = KR × u2

(
(P1, Q2), (P̄, R)

)
= 1× 3 = 3,

• CEU(2,R̄)(ρ
′) = KR̄ ×min

(
u2

(
(P1, R2), (P̄, R̄)

)
, u2

(
(Q1, R2), (P, R̄)

))
= 3.

It can be checked that with ρ′, each player gets the maximal possible utility485

($3k) – no player has incentive to deviate: ρ′ is a pure Nash equilibrium.

3.2. Credal Games and Evidential games

Bel games as defined above can be understood under the DS theory or under

the theory of imprecise probabilities. Because the Choquet expected utility is

compatible with both theories, we have first considered the pessimistic Choquet490

integral as a way to evaluate the utility of the agents. Let us briefly investigate

the model in each of the two interpretations, with respect to the different ways

of conditioning and to the different decision rules.

3.2.1. CEU, JEU and Pignistic Games in the DS theory of evidence

Let us first consider problems having an interpretation in the DS theory and

are thus based on the Dempster’s rule of conditioning – we call these games
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“Evidential games”. Several decision rules can be used in this context, namely

the Choquet integral (CEU) used in the previous section, Jaffray’s linear utility

(JEU) and the transferable belief model (TBEU). Let us capture all of them as

particular cases of a generalized expected utility:

XEU(a) =
∑

B∈Sm

m(B)× fXEU
u◦a (B)

If m is a probability distribution, then EU(a) = XEU(a) in all three cases.495

We find back the CEU, JEU and TBEU with:

• fCEU
u◦a (B) = minω∈B u(a(ω))

• fJEU
u◦a (B) = αB minω∈B u(a(ω)) + (1− αB)maxω∈B u(a(ω))

• fTBEU
u◦a (B) =

∑
ω∈B

u(a(ω))
|B|

As to CEU (resp. JEU), the proof is trivial: one has just to rewrite fCEU
u◦a500

(resp. fJEU
u◦a ) in the equation to get back the on-focal-set expression.

As to TBEU, we need to go back to the expected utility model using the

distribution

∑
ω∈Ω

BetPm(ω)× u(a(ω)) =
∑
ω∈Ω

 ∑
B⊆Sm
ω∈B

m(B)

|B|

× u(a(ω))

=
∑

B∈Sm

∑
ω∈B

m(B)

|B|
× u(a(ω))

=
∑

B∈Sm

m(B)×
∑
ω∈B

u(a(ω))

|B|

=
∑

B∈Sm

m(B)× fTBEU
u◦a (B)

Definition 16 (Utility in an evidential game). The utility of a mixed strat-

egy profile ρ = (ρ1, . . . , ρn), for player i of type θi, is:

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈S

mDem
|θi

mDem
|θi (B)× fXEU

vσ
i

(B)

where XEU ∈ {CEU, JEU,TBEU} and vσi (θ) = ui(σ(θ), θ)
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Proof (Proof of correctness). See Proof 2 in Appendix.

It can be noted that we find back Definition 14 by setting XEU := CEU.505

The definitions of pure and mixed Nash equilibria remain unchanged, i.e. ρ is

a pure (resp. mixed) Nash equilibrium for XEU iff, whatever (i, θi), there exists

no pure (resp. mixed) strategy ρ′i such that XEU(i,θi)(ρ
′
i.ρ−i) > XEU(i,θi)(ρ).

3.2.2. Bel games in the credal interpretation

In the credal interpretation, the mass distribution actually defines a family of510

probability over the combinations of types, hence the use of the Fagin-Halpern

conditioning. This interpretation is compatible with the Choquet-based decision

rule (when the capacity used is a Bel measure, the Choquet value of a decision

is equal to the minimum value of the expected utilities provided by the different

probabilities of the family). In [39], it is also shown to be echo compatible with515

Jaffray’s linear utility (JEU).

Notice that Dempster’s rule also receives an interpretation in the credal

context: it leads to a family consisting of the conditionals of those probabilities

in the family which are the most likely (assessing a maximal probability to the

event C we now know for sure) – hence the name “Max likelihood conditioning”.520

So, in a credal game:

Definition 17 (Utility in a Credal game). The utility of a mixed strategy

profile ρ = (ρ1, . . . , ρn), for player i of type θi, is:

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm|θi

m|θi(B)× fXEU
vσ
i

(B)

where XEU ∈ {JEU,CEU} and m|C ∈ {mFH
|C ,mStrong

|C ,mWeak
|C ,mDem

|C }

Proof (Proof of correctness). See Proof 3 in Appendix.

This modelling leaves the definitions of pure and mixed Nash equilibria un-525

changed, i.e. ρ is a pure (resp. mixed) Nash equilibrium for XEU iff, whatever

(i, θi), there exists no pure (resp. mixed) strategy ρ′i with a greater XEU.
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4. From Bel games to complete-information games

One of the most prominent results about Bayesian games is Howson–Rosenthal’s

theorem [13]: any 2-player Bayesian game can be transformed into a (complete530

information) polymatrix game equivalent to the original one. This result is im-

portant from the computational point of view since it provides 2-player Bayesian

games with practical resolution tools: to solve a 2-player Bayesian games, it is

enough to use this theorem and to solve the resulting polymatrix game by us-

ing one of the algorithms proposed for such games [16, 17]. In the sequel, we535

generalize this theorem to Bel games and extend it to any number of players.

4.1. The direct transform

A first idea is to define from a Bel game G, a hypergraphical game G̃, the

vertices (players) of which are pairs (i, θi) with action set Ai – to each pure

strategy σ of G corresponds a unique pure strategy σ̃ of G̃ and conversely – we540

call σ̃ the Selten3 transform of σ:4

Definition 18 (Selten transform of a pure strategy). For any pure strat-

egy σ of G, the Selten transform of σ is the vector σ̃ defined by σ̃(i,θi) = σ(θi).

The local games of the hypergraphical game correspond to the focal elements

of m. Roughly, (i, θi) plays in the local game corresponding to the focal element545

B if the type θi is plausible for B – i.e. if there exists θ′ ∈ B such that θ′i = θi. In

this local game, (i, θi) obtains a local utilityK|θi ·m(B)·fXEU
ṽσ̃
i

(B∩{θ′ | θ′i = θi}).

Given a profile of actions σ̃, and a player (i, θi), the hypergraphical game

sums (i, θi)’s local utilities over all the focal elements for which θi is plausible:

the global utility for (i, θi) is equal to the XEU of the joint σ.550

One may note that two pairs (i, θi) and (i, θ′i) may play in the same local

game – this happens when θ and θ′ belong to the same focal element. In this

3Named after Selten, who proposed this definition for Bayesian games [3].
4We could use the notation ρ for both, but the pure strategies of the Bel game are vectors

of functions σi : Θi → Ai while the pure strategies of G̃ are vectors in
∏

i∈N

∏
θi∈Θi

Ai. So,

we keep the two notations σ and σ̃.
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case, the utility of (i, θ′i) does not depend on the action played by (i, θi) and

conversely.

For any focal element B of m, let Players(B) = {(i, θi) | θ ∈ B, i ∈ N} –555

Players(B) denotes the future players involved in the local game corresponding

to B. Let Ẽ be the multiset Ẽ := [Players(B) | B ∈ Sm]. The elements e of Ẽ

and the focal elements in Sm are in one-to-one correspondence and we denote

Be the focal element of m which leads to e. These notations allow us to propose

a first, direct generalization of Howson–Rosenthal’s transform to Bel games:560

Definition 19 (Direct transform of a Bel game). The direct transform of

a Bel game G =
(
N, (Ai,Θi, ui)i∈N ,m

)
is the hypergraphical game

G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:

• Ñ = {(i, θi) | i ∈ N, θi ∈ Θi},

• Ã(i,θi) = Ai,565

• Ẽ = [Players(B) | B ∈ Sm],

• For each e ∈ Ẽ, (i, θi) ∈ e and σ̃ ∈ Ã,

ũe
(i,θi)

(σ̃e) = K|θi ·m(Be) ·fXEU
ṽσ̃
i

(B∩{θ′ | θ′i = θi}), using ṽσ̃i (θ) = ui(σ̃θ, θ)

where we recall that σ̃θ = (σ̃(1,θ1), . . . , σ̃(n,θn))

It is straightforward to show that the XEU value of a pure strategy ρ inG and570

the global utility of ρ̃ in G̃ are equal, whatever is the couple (i, θi) considered.

Proposition 2. Let G be a Bel game based on the Dempster’s rule of condi-

tioning and let G̃ be its direct transform. For any pure strategy σ of G, it holds

that XEU(i,θi)(σ) = ũ(i,θ)(σ̃).

Proof. See Proof 4 in Appendix.575

Let us extend the Selten transform to mixed strategies ρ of G: each ρ̃(i,θi) =

ρi(θi) is then a probability distribution over Ai, and ρ̃ is then a vector of such

distributions.

Proposition 3. Let G be a Bel game and G̃ its direct transform. For any mixed

strategy ρ of G, it holds that XEU(i,θi)(ρ) = ũ(i,θ)(ρ̃).580

26



Proof. See Proof 5 in Appendix.

It can be checked that when m is a probability distribution, and G is a 2-

player game, we get at most |Θ| local games, each involving two players (i, θi)

and (j, θj): G̃ is a polymatrix game, and Howson–Rosenthal’s Theorem is re-

covered. More generally, we prove:585

Theorem 1 (Generalized Howson–Rosenthal’s Theorem). For any Bel

game G based on a XEU utility and the Dempster’s rule of conditioning, there

exists a hypergraphical game G̃ such that ρ is a pure (resp. mixed) Nash equi-

librium of G iff ρ̃ is a pure (resp. mixed) Nash equilibrium of G̃.

Proof. See Proof 6 in Appendix.590

Example 11. Let us define the direct transform of the Bel game G correspond-

ing to our running example (again, with Dempster conditioning and the Choquet

expected utility). The set of players is: Ñ = {(1, P), (1, P̄), (2, R), (2, R̄)}. The set

of actions are Ã(i,θi) = {Pi, Qi, Ri}.

Because m has two focal elements B1 = {(P̄, R)} and B2 = {(P̄, R̄), (P, R̄)}595

each with a mass of 1
2 , G̃ involves two local games. The set of players involved

are respectively e1 = {(1, P̄), (2, R)} and e2 = {(1, P̄), (1, P), (2, R̄)}. G̃’s hyper-

graph is drawn on Figure 3.

{
(P, R̄), (P̄, R̄)

}
{
(P̄, R)

}
(1, P)

(1, P̄) (2, R)

(2, R̄)

Figure 3: G’s direct transform. Gray circles denote vertices (players; one shade per agent),

white boxes denote hyperedges (local games; linked to the players involved).

Player (2, R̄) plays only in e2, we have for instance:

ũe2
(2,R̄)(R1, P1, R2) = KR̄ ·m(B2)×min

[
u2

(
(R1, R2), (P, R̄)

)
, u2

(
(P1, R2), (P̄, R̄)

)]
= 1×min(2, 3) = 2.
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For player (1, P̄), which plays in both local games, we have for instance:

ũe1
(1,P̄)(P1, P2) = KP̄ ·m(B1)× u1

(
(P1, P2), (P̄, R)

)
= 0.5× 2 = 1

ũe2
(1,P̄)(a(1,P), P1, Q2) = KP̄ ·m(B2)× u1

(
(P1, Q2), (P̄, R̄)

)
= 0.5× 3 = 1.5

The Selten transform of the Nash equilibrium ρ′ described in Example 10 is:

ρ̃′((1, P̄)) = P1, ρ̃′((1, P)) = Q1, ρ̃′((2, R̄)) = R1, ρ̃′((2, R)) = Q2.

One can check that:

ũ(1,P̄)(ρ̃′) = ũe1
(1,P̄)

(
(P1, Q2)

)
+ ũe2

(1,P̄)

(
(Q1, P1, R2)

)
= CEU(1,P̄)(ρ

′).

Notice that in the sum, one part of the utility of (1, P̄) comes from subgame e1

(i.e., from B1) and the other part from local game e2 (i.e., from B2).600

As to the complexity of the transform, let α (resp. β) be the maximum

number of actions (resp. types) per player in G and k the degree of additivity

of m. It holds that G contains n utility tables of size (α ·β)n and the size of the

description of m is bounded by k · n · |Sm|. So, Size(G) is in O
(
n · (α · β)n + k ·

n · |Sm|
)
.605

G̃ contains |Sm| local games. Each of them involves at most k · n players

(i, θi) – the size of their SNF representation is thus at most k ·n ·αkn – hence a

spatial cost for the representation of G̃ in O(|Sm| · k · n · αkn). Notice now that

since m is k-additive, |Sm| < βk·n. So, Size(G̃) is bounded by k · n · (α · β)k·n ≤

nk · (α · β)k·n. In short, we get:610

Proposition 4 (Complexity of the direct transform). The direct transform

of a Bel game G has a temporal complexity in O
(
|Sm| · k2 · n · αk·n · β

)
⊆

O
(
k ·β ·Size(G)k

)
and a spatial complexity in O

(
|Sm| ·k ·nαk·n) ⊆ O

(
Size(G)k

)
.

Proof. See Proof 14 in Appendix.

So, the degree of additivity of the bpa is the main factor of complexity.615

Hopefully, low degrees of additivity can be assumed – it has indeed been shown

[40, 41] that such low values (typically, k ≤ 3) allow the description of many
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cases of interest. In such situations, the transform is quadratic or, at worst,

cubic.

The direct transform, as defined above, holds for Demspter rule of condi-620

tioning. A variant can be used for each conditioning rule in which the focal

elements of conditioned bpa are obtained by directly conditioning the original

focal elements (each focal element B containing θi leads to a focal element B|θi).

During strong or weak conditioning, masses aren’t transferred but stay on the

prior focal elements – i.e., B|θi = B. Modifying the local utility definition,625

switching the term fXEU
ṽσ̃
i

(B ∩ {θ′ | θ′i = θi}) to fXEU
ṽσ̃
i

(B), captures both strong

conditioning (with K|θi = 1/Pl({θ′ | θ′i = θi})) and weak conditioning (with

K|θi = 1/Bel({θ′ | θ′i = θi})).

Except for very peculiar cases, this kind of transform cannot be used with

Fagin-Halpern’s rule of conditioning, in which the conditioned focal elements630

cannot be assumed to be subsets of the prior ones.

The following transform enables both kinds of conditioning.

4.2. The conditioned transform

In the previously defined transform, we compute the CEU over the prior

focal set, which is not possible in general. On the contrary, for the following635

transform, we first compute the set of conditioned focal elements, which will all

lead to a local game, even if they are not (subsets of) prior focal elements.

Let S∪ =
⋃

i∈N,θi∈Θi
Sm|θi

be the set of all m|θi ’s focal elements, that is, the

union of focal sets obtained after all possible conditioning “given θi”. The local

games of the hypergraphical game G̃ correspond to the elements B ∈ S∪. Again,640

(i, θi) plays in the local game corresponding to B if the type θi is plausible for

B and obtains a local utility m|θi(B)× fXEU(B), equal to the amount of XEU

which is computed over B.

Definition 20 (Conditioned transform).

The conditioned transform of a Bel game G =
(
N, (Ai,Θi, ui)i∈N ,m

)
is the645

hypergraphical game G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:
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• Ñ = {(i, θi) | i ∈ N, θi ∈ Θi},

• Ã(i,θi) = Ai,

• Ẽ =
[
Players(B) | B ∈

⋃
(i,θi)∈Ñ Sm|θi

]
,

• For each e ∈ Ẽ, (i, θi) ∈ e and ρ̃ ∈ Ã, ũe
(i,θi)

(ρ̃e) = m|θi(Be)× fXEU
ṽσ̃
i

(Be),650

where ṽσ̃i (θ) = ui(σ̃θ, θ).

It is straightforward to show that the XEU value of a pure strategy σ in G and

the global utility of σ̃ in G̃ are equal, whatever is the couple (i, θi) considered.

We also prove that:

Proposition 5. Let G be a Bel game and G̃ its conditioned transform. For any655

pure or mixed strategy ρ of G, it holds that:

(i) XEU(i,θi)(ρ) = ũ(i,θ)(ρ̃)

(ii) ρ is a Nash equilibrium of G iff ρ̃ is a Nash equilibrium of G̃.

Proof. See Proof 6 in Appendix.

Example 12. The hypergraph of the conditioned transform of our running ex-660

ample is drawn on Figure 4.

{
(P, R̄)

}
{
(P, R̄), (P̄, R̄)

}
{
(P̄, R̄)

}
{
(P̄, R)

}

(1, P)

(1, P̄) (2, R)

(2, R̄)

Figure 4: G’s conditioned transform. Gray circles are vertices (players; one color per agent),

white boxes are hyperedges (local games; linked to the involved players).

This transform can be applied with any rule of conditioning. Notice that the

hypergraphical game it produces can be different from the one obtained with
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the direct transform (assuming the same conditioning in both, e.g., Dempster’s

rule of conditioning). In particular, it may produce more local games (with665

fewer players) than the direct transform.

Proposition 6 (Complexity of the conditioned transform).

The conditioned transform of a Bel game G has a temporal complexity in O
(
n ·

β·Tcond + |S∪|·k′2·n·αk′·n) and a spatial complexity in O
(
|S∪|·k′·n·αk′·n), where

S∪ =
⋃

(i,θi)∈Ñ Sm|θi
, k′ = maxB∈S∪ |B| and Tcond is the temporal complexity670

of a conditioning of m “given θi”.

Using Dempster, Strong or Weak conditioning, it leads to a temporal complexity

in O
(
k · Size(G)k

)
and a spatial complexity of O

(
Size(G)k

)
.

Proof. See Proof 15 in Appendix.

So, the conditioned transform leads to a different hypergraphical game than675

the direct one – but both represent the same problem, and both transforms

have the same worst-case spatial complexity. In practice, the size of the trans-

formed game depends on the structure of the belief function. Typically, if a

focal element B involves only one type θi for a given agent i, both transforms

will lead to the same local game Players(B) (as B = B|θi), but the conditioned680

transform may produce (many) more local games and be less concise. If on

the contrary, many types are compatible with a focal element B for any agent,

the local game produced by the direct transform may have a bigger size. Con-

sider for example a 2-player Bel game where m verify m({(θ1, θ2), (θ′1, θ′2)}) =

m({(θ1, θ′2), (θ′1, θ2)}) = 1/2. With the direct transform, we get two 4-player685

local games, while the conditioned transform leads to four 2-player local games.

4.3. The TBM transform

In the framework of the Transferable Belief Model each agent first revises the

prior knowledge using Dempster’s rule of conditioning. Then, at the pignistic

level (at the very moment the decision is made), the agent deduces a proba-690

bilistic distribution, by making the equiprobability assumption, and ranks the

actions according to their expected utility. Of course, any of the two previous
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transformations can be used, letting XEU be the TBEU value in Definitions

19 and 20. However it is possible to exploit the 1-additivity of these pignistic

probabilities in order to get a low-complexity hypergraph.695

This last transform, dedicated to the TBM model, is simply defined by using

a particular conditioning mPign
|C in Definition 20: it summarizes the composition

of the Dempster conditioning and the pignistic probability computation in one

single step and directly derives a 1-additive mass function. Since any focal

element is a singleton, the number of players in each local game is equal to the700

number of players in the original game. In particular, the resulting hypergraph

is a polymatrix game when only two agents are involved in the original game.

For any C such that Pl(C) > 0 and any ω ∈ C:

mPign
|C ({ω}) = 1

Pl(C)
×
∑

B∈Sm
ω∈B

m(B)

|B ∩ C|

This leads to the following transform:

Definition 21 (TBM transform).

The TBM transform of a Bel game G =
(
N, (Ai,Θi, ui)i∈N ,m

)
is the hyper-705

graphical game G̃ =
(
Ñ , Ẽ, (Ã(i,θi))(i,θi)∈Ñ , (ũe

(i,θi)
)e∈Ẽ,(i,θi)∈e

)
where:

• Ñ = {(i, θi) | i ∈ N, θi ∈ Θi},

• Ã(i,θi) = Ai,

• Ẽ =
[
Players

(
{θ}
)
| θ ∈ Θ

]
,

• For each e ∈ Ẽ, let θ be the type configuration which led to e. For each710

(i, θi) ∈ e and ρ̃ ∈ Ã, ũe
(i,θi)

(ρ̃e) = mPign
|θi ({θ})× ui(ρ̃θ, θ).

Proposition 7. Let G be a Bel game and G̃ its TBM transform. For any pure

or mixed strategy ρ of G, it holds that:

(i) TBEU(i,θi)(ρ) = ũ(i,θ)(ρ̃)

(ii) ρ is a Nash equilibrium of G iff ρ̃ is a Nash equilibrium of G̃.715
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Proof. See Proof 7 in Appendix.

Proposition 8 (Complexity of the TBM transform).

The TBM transform of a Bel game G has a temporal complexity in O
(
k·Size(G)

)
and a spatial complexity in O

(
Size(G)

)
.

Proof. See Proof 16 in Appendix.720

Example 13. The hypergraphical game obtained by the TBM transform of our

example is drawn on Figure 5.

{
(P, R̄)

}
{
(P̄, R̄)

}
{
(P̄, R)

}
(1, P)

(1, P̄) (2, R)

(2, R̄)

Figure 5: G’s TBM transform. Gray circles are vertices (players; one color per agent), white

boxes represent the local games.

4.4. Summary

Let us now summarize which transform can be used, depending on the nature

of the prior knowledge (evidential or credal), on the conditioning rule and on725

the global utility criterion (CEU, JEU or TBEU):

• In a evidential view, the revision is made using Dempster conditioning,

and the XEU may be the TBEU [11], JEU [27] or its special case CEU.

• In a credal view, the Dempster and Strong rules of conditioning hold

when the knowledge is revised (i.e., when the agents learn facts) while FH730

conditioning holds when a focusing is to be performed (i.e., agents observe

incidental events) – see [42, 31, 34] for further discussion about knowledge

revision and focusing. Both the CEU and the JEU criteria are compatible

with this view (the latter being a generalization of the former).
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Table 5 indicates the transforms which suit each of these settings. In short,735

the conditioned transform is the only one which is suitable for all the settings.

The direct transform holds only for Dempster’s rule of conditioning while the

TBM transform holds only for the TBEU.

Conditioning XEU Transform

Dempster’s cond. Any XEU Direct transform

Any conditioning Any XEU Conditioned transform

Dempster’s cond. TBEU TBM transform

Table 5: Valid conditionings and XEU depending on the transform.

Last, when several transforms are suitable for the setting, the choice of

the transform to use can be guided by its complexity. In short: the TBM740

transform has a lower spatial complexity than the direct and the conditioned

ones (Table 6). Except for the FH conditioning, the last two have the same

worst-case complexity; they differ in that the direct one may have bigger local

games (involving numerous agents) while the conditioned one may have more

local games.745

Transform Temporal complexity Spatial complexity

Direct transform O
(
k · Size(G)k

) ∗
O
(
Size(G)k

)
Conditioned transform O

(
k · Size(G)k

) ∗∗
O
(
Size(G)k) ∗∗

TBM transform O
(
k · Size(G)

) ∗
O
(
Size(G)

)
Table 6: Complexity of the transforms – k is the degree of k-additivity – ∗ Normalisation time

excluded – ∗∗ Using Dempster’s, Strong or Weak conditioning.

5. Conclusion

This article provides two main contributions. On the one hand, we define a

model for simultaneous games of incomplete information based on belief func-

tions. On the other hand, we introduce three transforms which make it possible

to build an hypergraphical game (of complete information) equivalent to the750
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initial Bel game, thus generalizing Howson–Rosenthal’s theorem. The transfor-

mations preserve utilities, so the study of a Bel game can be reduced to that of

a complete-information game. In particular, Nash equilibria are in correspon-

dence: any equilibrium in one game is an equilibrium in the other. Furthermore,

under some conditions (a low degree of additivity of the mass function or the755

use of the Transferable Belief Model framework), the transformation is polyno-

mial in time and space; as a consequence, the algorithmic tools developed for

hypergraphical games [17, 16] can be used to solve Bel games.

This work opens several research directions. First, we aim at extending this

model to Choquet integrals based on any kind of capacity measure. It will allow760

for the definition of games based on other decision rules, for instance the rank-

dependent utility rule [43]. Then, a finer complexity analysis can be conducted,

based on the characterization of the conditioned mass functions. Finally, we

would like to formalize those results with the Coq proof assistant [44] in order

to build, with other on-going results, a modular, formal library on incomplete-765

information games and decision theory. This work will facilitate the extension of

the model presented in this paper to other decision rules, including rules leading

to partial orders (e.g., the interval-valued utility for belief functions [27]). In

particular, we expect that the definitions could be extended straightforwardly

and that the transforms should hold, up to a change in the range of utility770

functions from R to a non-totally-ordered set.

Appendix A. Proofs

Appendix A.1. Proofs of correctness

Proof 1 (Correctness of Definition 14 – Utility). Particular case of Def-

inition 17, using CEU and the Dempster conditioning (see Proof 3).775

Proof 2 (Correctness of Definition 16 – Utility). Particular case of Def-

inition 17, using the Dempster conditioning (see Proof 3).

35



Proof 3 (Correctness of Definition 17 – Utility). On the one hand, any

mixed strategy profile ρ ∈
∏

i∈N (Θi → π(Ai)) defines a probability Prρ over the

possible pure strategy profiles σ ∈ Σ =
∏

i∈N (Θi → Ai) by:
5

Prρ(σ) =
∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

On the other hand, merging ρ and m|θi leads to a bpa mρ over A × Θ, from

which any element X = {(a, θ), (a′, θ′), . . . } is focal iff B = {θ, θ′, . . . } is focal

for m and (at least) one pure strategy profile σ is compatible with X and possible780

according to Prρ; i.e., σ(θ) = a, σ(θ′) = a′, . . . and Prρ(σ) > 0.

Let g.B := {(g(θ), θ) | θ ∈ B} denote such focal element. By definition:

mρ
|θi(g.B) = m(B)×

∑
σ∈Σ

∀θ∈B,σ(θ)=g(θ)

Prρ(σ)

Thus, the XEU of a mixed strategy profile rewrites:

XEU(i,θi)(ρ) =
∑

g.B∈Sm
ρ
|θi

mρ
|θi(g.B)× fXEU

vσ
i

(B)

=
∑

B∈Sm|θi

∑
g:B→A

m|θi(B)×

 ∑
σ∈Σ

∀θ∈B,σ(θ)=g(θ)

Prρ(σ)

× fXEU
vσ
i

(B)

=
∑

B∈Sm|θi

∑
g:B→A

∑
σ∈Σ

∀θ∈B,σ(θ)=g(θ)

m|θi(B)× Prρ(σ)× fXEU
vσ
i

(B)

Given any B ⊆ Θ, the set of functions g : B → A defines a partition of Σ

5π(X) denotes the set of probabilities over X
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(which groups σ mappings whose images of B are identical), so:

XEU(i,θi)(ρ) =
∑

B∈Sm|θi

∑
σ∈Σ

m|θi(B)× Prρ(σ)× fXEU
vσ
i

(B)

=
∑
σ∈Σ

Prρ(σ)×
∑

B∈Sm|θi

×m|θi(B)× fXEU
vσ
i

(B)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm|θi

m|θi(B)× fXEU
vσ
i

(B)

Proof 4 (Proposition 2 – Direct transform). Corollary of Proposition 3 in

the case of pure strategies (see Proof 5).

Proof 5 (Proposition 3 – Direct transform). Let G be a Bel Game, G̃ be

its conditioned transform and Eθi = {θ′ | θ′i = θi} be the conditioning event785

“given θi”.

Recall that for any mixed strategy profile ρ of G, ρ̃ is its Selten transform

and ρ̃(i,θi) = ρi(θi) is a probability distribution over Ai = Ã(i,θi). Similarly, for

any pure strategy profile σ, σ̃ is its Selten transform and σ̃(i,θi) = σi(θi) ∈ Ai =

Ã(i,θi). Finally, since the Selten transform is bijective, we have:790

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈S

mDem
|θi

mDem
|θi (B)× fXEU

vσ
i

(B)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm

B∩Eθi
̸=∅

K|θi ×m(B)× fXEU
vσ
i

(B ∩ Eθi)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
e∈Ẽ

(i,θi)∈e

K|θi ×m(Be)× fXEU
vσ
i

(Be ∩ Eθi)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

× ũ(i,θi)(σ̃)

= EU(i,θi)(ρ̃)
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Proof 6 (Proposition 5 – Conditioned transform). Same remarks as for

Proof 5. It leads to:

XEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

∑
B∈Sm|θi

m|θi(B)× fXEU
vσ
i

(B)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

×
∑

B∈Sm|θi

m|θi(B)× fXEU
ṽσ̃
i

(B)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

×
∑
e∈Ẽ
θi∈e

m|θi(Be)× fXEU
ṽσ̃
i

(Be)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

× ũ(i,θi)(σ̃)

= EU(i,θi)(ρ̃)

Proof 7 (Proposition 7 – TBM transform). Same remarks as for Proof 5.

It leads to:

TBEU(i,θi)(ρ) =
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×
∑
θ∈Θ

BetPmDem
|θi

(θ)× ui(σ(θ), θ)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

 ∑
B∈S

mDem
|θi

θ∈B

m(B)

|B|

× ui(σ(θ), θ)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×

 1

Pl(Eθi)
×
∑

B∈Sm
θ∈B

m(B)

|B ∩ Eθi |

× ui(σ(θ), θ)

=
∑
σ∈Σ

(∏
i∈N

∏
θi∈Θi

ρi(θi)(σi(θi))

)
×mPign

|θi ({θ})× ui(σ(θ), θ)

=
∑
σ̃∈Ã

 ∏
(i,θi)∈Ñ

ρ̃(i,θi)(σ̃(i,θi))

× ũ(i,θi)(σ̃)

= EU(i,θi)(ρ̃)

Proof 8 (Theorem 1 – Extended Howson–Rosenthal’s theorem). Direct
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corollary of Proof 6.

Appendix A.2. Complexity lemmas – mass function operations795

In this section we consider a k-additive mass function m. We denote s =

|Sm|. Set operations on focal elements (such as union, intersection and mem-

bership) involve O(k) operations. Representing a mass function just involves

a dictionary mapping at most s subsets (encoded by k bits) to numeric val-

ues. Hence a space complexity of O(ks). In the sequel, we will denote such800

complexity statements by Time(∩) ∈ O(k) and Size(m) ∈ O(ks) for example.

Lemma 1 (Dempster conditioning’s complexity).

• m is k-additive =⇒ mDem
|C is at most k-additive

• Size(mDem
|C ) ≤ Size(m) ∈ O(ks),805

• Time
(
mDem

|C
)
∈ O(ks).

Proof 9 (Lemma 1 – Dempster conditioning’s complexity). First, note

that every focal element of mDem
|C is a subset of a focal element of m, so mDem

|C

is at most k-additive and |SmDem
|C

| ≤ s. Thus we have Size(mDem
|C ) ≤ Size(m) ∈

O(ks).810

To compute all the values of mDem
|C , two loops over Sm suffice. Initialize

mDem
|C as a function which defaults to 0, and also a single variable Pl(C) := 0.

• First, compute both mDem
|C ’s unnormalized values and the normalization

factor Pl(C): for each B ∈ Sm, if B ∩C ̸= ∅, add m(B) to mDem
|C (B ∩C)

and to Pl(C).815

• Second, normalize those values: for each B ∈ SmDem
|C

, mDem
|C (B) becomes

mDem
|C (B)/Pl(C).

The first loop involves s tests thus is in O(ks). The second one doesn’t involve

any test and is thus in O(s). Finally, Time(mDem
|C ) ∈ O(ks).

Lemma 2 (Weak conditioning’s complexity).820
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• m is k-additive =⇒ mWeak
|C is k-additive,

• Size(mWeak
|C ) ≤ Size(m) ∈ O(ks),

• Time
(
mWeak

|C
)
∈ O(ks)

Proof 10 (Lemma 2 – Weak conditioning’s complexity). The proof is sim-825

ilar to Proof 9 since the algorithm is almost identical: the only difference is that

masses stays on B (they are not transferred to B ∩ C). The complexity result

holds: Time(mWeak
|C ) and Size(mWeak

|C ) are both in O(ks).

Lemma 3 (Strong conditioning’s complexity).

830 • m is k-additive =⇒ mStrong
|C is k-additive,

• Size(mStrong
|C ) ≤ Size(m) ∈ O(ks),

• Time
(
mStrong

|C
)
∈ O(ks)

Proof 11 (Lemma 3 – Strong conditioning’s complexity). The proof is

similar to Proof 10 since the algorithm is almost identical: the only difference is835

that the test condition changes from B∩C ̸= ∅ to B ⊆ C (thus the normalization

factor is Bel(C)). Since this test is also in O(k), the complexity result holds:

Time(mStrong
|C ) and Size(mStrong

|C ) are both in O(ks).

Lemma 4 (Fagin-Halpern conditioning’s complexity).

840 • In the worst case, mFH
|C can be |C|-additive, even if m is k-additive with

k < |C|

• Size
(
mFH

|C
)
may have 2|C| focal elements even if Sm < 2|C|

Proof 12 (Lemma 4 – Fagin-Halpern conditioning’s complexity). Fagin–

Halpern conditioning does not preserve nor the size, neither the k-additivity of845

m. Consider for instance a frame of discernment Ω = {ω1, . . . , ωn} and a 2-

additive mass function m such as m({ωi}) > 0 for all i and m({ωi, ωj}) > 0

for all i ̸= j. Then, for any nonempty C ⊂ Ω, each subset of B ⊆ C is a focal

element of Bel(· | C) – thus |SmFH
|C

| = 2|C| and Bel(· | C) is |C|-additive.
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Appendix A.3. Proofs of complexity – Games850

In this section we consider a Bel game G with n ≥ 2 players, each of these

having at most α ≥ 2 actions and β ≥ 2 types, along with a k-additive mass

function with s focal elements, each of them is a set of n-tuples of types – so

s ≤ βkn.

Proof 13 (Proposition 1 – Spatial complexity of a Bel game). It holds855

that:

• G contains n utility tables of size (αβ)n (one for each agent, assigning an

utility value to a strategy profile and a type configuration).

• The size of m is bounded by kns (each of the s focal elements contains at

most k n-tuples of types).860

Thus, Size(G) ∈ O(n(αβ)n + kns).

Proof 14 (Proposition 4 – Complexity of the direct transform). The di-

rect transform G̃ of G has exactly s local games (one for each focal element B),

in which players are possible pairs (i, θi) such that ∃θ′ ∈ B, θ′i = θi. There

may be kn such pairs, so the corresponding local game is described by at most865

kn matrices of αkn cells, hence a spatial cost for the representation of G̃ in

O(sknαkn). Recall that s ≤ βkn and kn ≤ nk, it holds that Size(G̃) is bounded

by kn(αβ)kn ≤ nk(αβ)kn, i.e., Size(G̃) ∈ O(Size(G)k).

To instantiate those matrices, one has to compute each of the utility values

as from Definition 19:870

• First, for each of the nβ pairs (i, θi), compute Pl(Eθi) by a single loop

over m’s focal set in which nβ tests are made, so it involves O(sknβ)

operations.

• Then, for each of the s focal elements B (i.e., a local game e), for each of

the kn possible corresponding pairs (i, θi) and for each of the αkn possible875

local strategy profiles σ̃e, set ũ
e
(i,θi)

(σ̃e) := m(B)×fXEU
ṽσ̃
i

(B∩Eθi)/Pl(Eθi),

where fXEU

ṽ
˜sigma

i

(B ∩ Eθi) involves k operations.
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Thus we have Time(G̃) ∈ O(sknβ + sk2nαkn) = O(skn(β + kαkn)). Since

m is k-additive, s ≤ βkn, so Time(G̃) is bounded by knβkn(β + kαkn) ∈

O(k2nβ(αβ)kn) ⊆ O(βknk(αβ)kn); i.e., Time(G̃) ∈ O(βk × Size(G)k).880

Note that since the normalization doesn’t change the equilibria of G̃, usually

the first loop is not necessary and the complexity becomes Time(G̃) ∈ O(k ×

Size(G)k).

Proof 15 (Proposition 6 – Complexity of the conditioned transform).

Let s′ = |S∪| be the total number of focal elements, after all conditioning, and885

k′ = maxB∈S∪ |B| their maximal size. The conditioned transform G̃ of F has

exactly s′ local games, which involve at most k′n players each, thus they are

described by at most k′n matrices of αk′n cells, hence a spatial cost for the

representation of G̃ in O
(
k′ns′αk′n

)
.

If the conditioning is one of the Dempster, Strong or Weak ones, it holds890

that k′ ≤ k and s′ ≤ βkn (from Lemma 1, Lemma 2 or Lemma 3), so the bound

becomes kn(αβ)kn; i.e., Size(G̃) ∈ O
(
Size(G)k

)
.

On the contrary, if the Fagin-Halpern conditioning is used, we can just bound

k′ ∈ O(nβ) and s′ ∈ O(2β
n

) (by Lemma 4), and thus get a spatial complexity

Size(G̃) ∈ O
(
n2β2β

n

αn2β
)
.895

To construct those local utility matrices, one has to compute each of the

utility values:

• First, for each of the nβ pairs (i, θi), compute m|θi , according to the chosen

conditioning, say it costs Tcond.

• Then, for each of the s′ local games, for each of its k′n players and for each900

of the αk′n possible local strategy profiles σ̃e, set ũ
e
(i,θi)

(σ̃e) := m|θi(Be)×

fXEU
ṽσ̃
i

(Be), where fXEU
ṽσ̃
i

(Be) involves at most k′ operations.

The first loop costs nβTcond operations, the second one costs s′k′2nαk′n opera-

tions.

If the conditioning is one of the Dempster, Strong or Weak ones, it holds905

that k′ ≤ k, s′ ≤ βkn and Tcond ∈ O(kn) (from Lemma 1, Lemma 2 or Lemma
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3), so the bound becomes k2n(αβ)kn; i.e., Time(G̃) ∈ O
(
k · Size(G)k

)
.

On the contrary, if the Fagin-Halpern conditioning is used, we can just bound

k′ ∈ O(nβ), s′ ∈ O(2β
n

). [33]’s algorithm is used to compute masses in the

first loop – Tcond ∈ O(2β
n

) – thus we get a temporal complexity Time(G̃) ∈910

O(nβ2β
n

+ n3β22β
n

αn2β) = O(n3β22β
n

αn2β).

Proof 16 (Proposition 8 – Complexity of the TBM transform).

The TBM transform G̃ of G has at most |Θ| = βn local games (one for each

possible type configuration θ), in which players are the n possible pairs (i, θi).

So each local game is described by n matrices of αn cells, hence a spatial cost915

for the representation of G̃ in O
(
n(αβ)n

)
– that is, Size(G̃) ∈ O

(
Size(G)

)
.

To construct these local utility matrices, one has to compute each of the utility

values. First precompute Pl(Eθi) for each type of each agent, it requires O(sknβ)

operations (see Proof 14). Then, for each agent i ∈ N , we compute in a single

loop the β conditioned mass functions mPign
|θi :920

• For each θ ∈ Θ, initialize mPign
|θi (θ) := 0. It costs O(βn) operations.

• For each focal element B ∈ Sm, and for each θ ∈ B, add m(B)
|B∩Eθi

|×Pl(Eθi
)

to mPign
|θi (θ). It costs O(sk2) operations.

Thus, computing all mPign
|θi ’s value (for each i and θi) requires O

(
nβn + nsk2

)
operations. Finally, for each of the βn local games, for each of the n local players925

(i, θi) and each of the αn action profiles, set the local utility in O(1) – it requires

O
(
n(αβ)n

)
operations.

Finally, the full transform requires O
(
sknβ + n(αβ)n + sk2n

)
operations.

Note that since the normalization doesn’t change the equilibria of G̃, it is usually

not needed to compute Pl(Eθi)’s values, then the complexity becomes Time(G̃) ∈930

O
(
n(αβ)n + sk2n

)
= O

(
k × Size(G)

)
.
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