M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, Ultrathin (<4 nm) SiO2 and Si???O???N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits, Journal of Applied Physics, vol.90, issue.5, p.2057, 2001.
DOI : 10.1063/1.1385803

L. C. Feldman, Fundamental Aspects of Silicon Oxidation, p.1, 2001.

G. D. Wilk, R. M. Wallace, and J. M. Anthony, High-?? gate dielectrics: Current status and materials properties considerations, Journal of Applied Physics, vol.89, issue.10, p.5243, 2001.
DOI : 10.1063/1.1361065

J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Interface from First Principles, Physical Review Letters, vol.85, issue.6, pp.1298-1301, 2000.
DOI : 10.1103/PhysRevLett.85.1298

URL : https://hal.archives-ouvertes.fr/hal-00640153

S. Tang, R. Wallace, A. Seabaugh, and D. King-smith, Evaluating the minimum thickness of gate oxide on silicon using first-principles method, Applied Surface Science, vol.135, issue.1-4, p.137, 1998.
DOI : 10.1016/S0169-4332(98)00286-4

T. Yamasaki, C. Kaneta, T. Uchiyama, T. Uda, and K. Terakura, interfaces, Physical Review B, vol.63, issue.11, p.115314, 2001.
DOI : 10.1103/PhysRevB.63.115314

K. Cho, G. Jun, I. Choi, and R. Dutton, First Principles Study of High-k Dielectric- Silicon Interfaces, Proceedings of the 3rd International Conference on Microelectronics and Interfaces, pp.123-129, 2002.

. Urdahl, Applied Physics Letters, p.1517, 1998.

S. Campbell, D. Gilmer, X. Wang, M. Hsich, H. Kim et al., MOSFET transistors fabricated with high permitivity TiO/sub 2/ dielectrics, IEEE Transactions on Electron Devices, vol.44, issue.1, p.104, 1997.
DOI : 10.1109/16.554800

S. Campbell, R. Smith, B. Hoilien, W. He, and . Gladfelter, Group IVB metal oxides: TiO2, ZrO2, and HfO2 as high permittivity gate insulators, Proceedings of MRS Workshop on High-k Gate Dielectrics, p.9, 2000.

S. George and A. W. Ott, Surface Chemistry for Atomic Layer Growth, The Journal of Physical Chemistry, vol.100, issue.31, pp.13121-13122, 1996.
DOI : 10.1021/jp9536763

G. D. Wilk, R. M. Wallace, and J. M. Anthony, Hafnium and zirconium silicates for advanced gate dielectrics, Journal of Applied Physics, vol.87, issue.1, p.484, 2000.
DOI : 10.1063/1.371888

E. P. Gusev, E. Cartier, D. A. Buchanan, M. Gribelyuk, M. Copel et al., Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues, Microelectronic Engineering, vol.59, issue.1-4, p.341, 2001.
DOI : 10.1016/S0167-9317(01)00667-0

R. Fletcher, Practical methods of optimization, 1987.
DOI : 10.1002/9781118723203

A. R. Leach, Molecular Modelling. Principles and Applications, 2001.

T. Schlick, Molecular modeling and simulation. An Interdisciplinary Guide, 2002.
DOI : 10.1007/978-1-4419-6351-2

L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics. With Applications to Chemistry, 1985.

D. R. Hartree, P. Cam, D. R. Hartree, and D. R. Hartree, The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra, Proc. Cam Proc. Cam. Phil. Soc. 24, p.426, 1928.
DOI : 10.1017/S0305004100015954

J. C. Slater, The Theory of Complex Spectra, Physical Review, vol.34, issue.10, p.1293, 1929.
DOI : 10.1103/PhysRev.34.1293

W. J. Hehre, L. Radom, P. V. Scheleyer, and J. A. Pople, Ab initio molecular orbital theory, Accounts of Chemical Research, vol.9, issue.11, 1986.
DOI : 10.1021/ar50107a003

S. F. Boys and F. Bernaldi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics, vol.2, issue.4, p.553, 1970.
DOI : 10.1002/9780470143582.ch1

R. J. Bartlett, Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules, Annual Review of Physical Chemistry, vol.32, issue.1, p.359, 1981.
DOI : 10.1146/annurev.pc.32.100181.002043

J. A. Pople, J. S. Binkley, and R. Seeger, Theoretical models incorporating electron correlation, International Journal of Quantum Chemistry, vol.25, issue.S10, p.1, 1976.
DOI : 10.1002/qua.560100802

S. R. Langhoff and E. R. Davidson, Configuration interaction calculations on the nitrogen molecule, International Journal of Quantum Chemistry, vol.4, issue.1, p.61, 1974.
DOI : 10.1002/qua.560080106

J. A. Pople, M. Head-gordon, and K. Raghavachari, Quadratic configuration interaction. A general technique for determining electron correlation energies, The Journal of Chemical Physics, vol.87, issue.10, p.5968, 1987.
DOI : 10.1063/1.453520

K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-gordon, A fifth-order perturbation comparison of electron correlation theories, Chemical Physics Letters, vol.157, issue.6, p.479, 1989.
DOI : 10.1016/S0009-2614(89)87395-6

K. Raghavachari, J. A. Pople, E. S. Replogle, and M. Head-gordon, Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order, The Journal of Physical Chemistry, vol.94, issue.14, p.5579, 1990.
DOI : 10.1021/j100377a033

K. Raghavachari and J. B. Anderson, Electron Correlation Effects in Molecules, The Journal of Physical Chemistry, vol.100, issue.31, p.12960, 1996.
DOI : 10.1021/jp953749i

R. Bartlett, Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry, The Journal of Physical Chemistry, vol.93, issue.5, p.1697, 1989.
DOI : 10.1021/j100342a008

R. J. Bartlett and J. F. Stanton, Applications of Post-Hartree-Fock Methods: A Tutorial, in Reviews in Computational Chemistry, pp.65-169, 1994.

M. Head-gordon, Quantum Chemistry and Molecular Processes, The Journal of Physical Chemistry, vol.100, issue.31, p.13213, 1996.
DOI : 10.1021/jp953665+

C. Møller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, p.618, 1934.
DOI : 10.1103/PhysRev.46.618

J. A. Pople, J. S. Binkley, and R. Seeger, Theoretical models incorporating electron correlation, International Journal of Quantum Chemistry, vol.25, issue.S10, p.1, 1976.
DOI : 10.1002/qua.560100802

F. Jensen, Introduction to Computational Chemistry, West Sussex, 1999.

S. Wilson, Electron Correlation in Molecules, 1984.

J. Olsen, O. Christiansen, H. Koch, and P. Jorgensen, Surprising cases of divergent behavior in Mo/ller???Plesset perturbation theory, The Journal of Chemical Physics, vol.105, issue.12, pp.5082-5090, 1996.
DOI : 10.1063/1.472352

B. Forsberg, Z. He, Y. He, and D. Cremer, Convergence behavior of the M???ller-Plesset perturbation series: Use of Feenberg scaling for the exclusion of backdoor intruder states, International Journal of Quantum Chemistry, vol.25, issue.3, p.306, 2000.
DOI : 10.1002/(SICI)1097-461X(2000)76:3<306::AID-QUA2>3.0.CO;2-0

J. C. Slater, Atomic Shielding Constants, Physical Review, vol.36, issue.1, p.57, 1930.
DOI : 10.1103/PhysRev.36.57

D. E. Woon and T. H. Dunning-jr, Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, The Journal of Chemical Physics, vol.98, issue.2, p.1358, 1993.
DOI : 10.1063/1.464303

T. Helgaker and P. Taylor, Gaussian basis sets and molecular integrals Modern Electronic Structure Theory World Scientific) section 5, pp.725-856, 1995.

T. H. Dunning and J. , Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, vol.90, issue.2, pp.1007-1023, 1989.
DOI : 10.1063/1.456153

T. Clark, J. Chandrasekhar, G. W. Spitznagel, and P. V. Schleyer, Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F, Journal of Computational Chemistry, vol.101, issue.3, pp.294-301, 1983.
DOI : 10.1002/jcc.540040303

J. E. Del-bene, Anab initio molecular orbital study of the structures and energies of neutral and charged bimolecular complexes of NH3 with the hydrides AHn (A = N, O, F, P, S, and Cl), Journal of Computational Chemistry, vol.106, issue.5, pp.603-615, 1989.
DOI : 10.1002/jcc.540100503

M. J. Frisch, J. A. Pople, and J. S. Binkley, Self???consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, The Journal of Chemical Physics, vol.80, issue.7, pp.3265-3269, 1984.
DOI : 10.1063/1.447079

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, 1994.
DOI : 10.1007/978-94-009-9027-2_2

R. M. Dreizler and E. K. Gross, Density Functional Theory, 1990.
DOI : 10.1007/978-3-642-86105-5

E. Lieb, Density functionals for coulomb systems, International Journal of Quantum Chemistry, vol.140, issue.3, p.243, 1983.
DOI : 10.1002/qua.560240302

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.140, issue.4A, p.1133, 1965.
DOI : 10.1103/PhysRev.140.A1133

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, 1994.
DOI : 10.1007/978-94-009-9027-2_2

A. Becke, In Modern Electronic Structure Theory, World Scientific, vol.II, 1995.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B, vol.23, issue.10, p.5048, 1981.
DOI : 10.1103/PhysRevB.23.5048

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, vol.45, issue.23, p.13244, 1992.
DOI : 10.1103/PhysRevB.45.13244

D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Physical Review Letters, vol.45, issue.7, p.566, 1980.
DOI : 10.1103/PhysRevLett.45.566

J. Perdew, Accurate Density Functional for the Energy: Real-Space Cutoff of the Gradient Expansion for the Exchange Hole, Physical Review Letters, vol.55, issue.16, p.1665, 1985.
DOI : 10.1103/PhysRevLett.55.1665

J. P. Perdew, Electronic Structure of Solids '91, 1991.

J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Review B, vol.54, issue.23, p.16533, 1996.
DOI : 10.1103/PhysRevB.54.16533

J. P. Perdew, S. K. , A. Zupan, and P. Blaha, Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation, Physical Review Letters, vol.82, issue.12, p.2544, 1999.
DOI : 10.1103/PhysRevLett.82.2544

B. G. Johnson, P. M. Gill, and J. A. Pople, The performance of a family of density functional methods, The Journal of Chemical Physics, vol.98, issue.7, p.5612, 1993.
DOI : 10.1063/1.464906

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, p.5648, 1993.
DOI : 10.1063/1.464913

A. D. Becke, A new mixing of Hartree???Fock and local density???functional theories, The Journal of Chemical Physics, vol.98, issue.2, p.1372, 1993.
DOI : 10.1063/1.464304

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.46, issue.11, p.6671, 1992.
DOI : 10.1103/PhysRevB.46.6671

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, p.1200, 1980.
DOI : 10.1139/p80-159

M. A. Marques and E. K. Gross, TIME-DEPENDENT DENSITY FUNCTIONAL THEORY, Annual Review of Physical Chemistry, vol.55, issue.1, pp.427-455, 2004.
DOI : 10.1146/annurev.physchem.55.091602.094449

URL : https://hal.archives-ouvertes.fr/hal-00438357

J. Gräfenstein and D. Cremer, Development of a CAS-DFT method covering non-dynamical and dynamical electron correlation in a balanced way, Molecular Physics, vol.122, issue.2-3, p.279, 2005.
DOI : 10.1137/1.9780898719604

J. Gräfenstein, E. Kraka, M. Filatov, and D. Cremer, Can Unrestricted Density-Functional Theory Describe Open Shell Singlet Biradicals?, International Journal of Molecular Sciences, vol.3, issue.4, p.360, 2002.
DOI : 10.3390/i3040360

E. B. Wilson, . Jr, J. D. Decius, and P. Cross, Molecular Vibrations, 1980.

D. J. Wales, A Microscopic Basis for the Global Appearance of Energy Landscapes, Science, vol.293, issue.5537, pp.2067-2070, 2001.
DOI : 10.1126/science.1062565

J. Simons, P. Jorgensen, H. Taylor, and J. Ozment, Walking on potential energy surfaces, The Journal of Physical Chemistry, vol.87, issue.15, p.2745, 1983.
DOI : 10.1021/j100238a013

A. Banerjee, N. Adams, J. Simons, and R. Shepard, Search for stationary points on surfaces, The Journal of Physical Chemistry, vol.89, issue.1, p.52, 1985.
DOI : 10.1021/j100247a015

P. Pulay, ImprovedSCF convergence acceleration, Journal of Computational Chemistry, vol.61, issue.4, p.556, 1982.
DOI : 10.1002/jcc.540030413

P. Császár and P. Pulay, Geometry optimization by direct inversion in the iterative subspace, Journal of Molecular Structure, vol.114, pp.31-34, 1984.
DOI : 10.1016/S0022-2860(84)87198-7

J. Baker and P. Pulay, Geometry optimization of atomic microclusters using inverse???power distance coordinates, The Journal of Chemical Physics, vol.105, issue.24, p.11100, 1996.
DOI : 10.1063/1.472911

P. Y. Ayala and H. B. Schlegel, A combined method for determining reaction paths, minima, and transition state geometries, The Journal of Chemical Physics, vol.107, issue.2, p.375, 1997.
DOI : 10.1063/1.474398

P. Pulay, G. Fogarasi, X. Zhou, and P. W. Taylor, Ab initio prediction of vibrational spectra: A database approach, Vibrational Spectroscopy, vol.1, issue.2, p.159, 1990.
DOI : 10.1016/0924-2031(90)80030-8

'. P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives, Journal of the American Chemical Society, vol.101, issue.10, p.2550, 1979.
DOI : 10.1021/ja00504a009

J. Baker, A. Kessi, and B. Delley, The generation and use of delocalized internal coordinates in geometry optimization, The Journal of Chemical Physics, vol.105, issue.1, p.192, 1996.
DOI : 10.1063/1.471864

P. E. Maslen, Geometry optimization of molecular clusters and complexes using scaled internal coordinates, The Journal of Chemical Physics, vol.122, issue.1, p.14104, 2005.
DOI : 10.1063/1.1829043

P. Pulay and G. Fogarasi, Geometry optimization in redundant internal coordinates, The Journal of Chemical Physics, vol.96, issue.4, p.2856, 1992.
DOI : 10.1063/1.462844

J. M. Bofill, Updated Hessian matrix and the restricted step method for locating transition structures, Journal of Computational Chemistry, vol.106, issue.1, pp.1-11, 1994.
DOI : 10.1002/jcc.540150102

J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, Walking on potential energy surfaces, The Journal of Physical Chemistry, vol.87, issue.15, p.2745, 1983.
DOI : 10.1021/j100238a013

J. Cerjan and W. H. Miller, On finding transition states, The Journal of Chemical Physics, vol.75, issue.6, p.2800, 1981.
DOI : 10.1063/1.442352

J. B. Foresman and A. Frisch, Exploring Chemistry with Electronique Structure Methods, p.15106, 1996.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.37, issue.2, p.785, 1988.
DOI : 10.1103/PhysRevB.37.785

M. Colle, J. Gmeiner, and W. Milius, Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3), Advanced Functional Materials, vol.13, issue.2, pp.108-112, 2003.
DOI : 10.1002/adfm.200390015

Q. S. Li and W. H. Fang, Theoretical studies on structures and reactivity of 8-hydroxyquinoline and its one-water complex in the ground and excited states, Chemical Physics Letters, vol.367, issue.5-6, pp.637-644, 2003.
DOI : 10.1016/S0009-2614(02)01791-8

M. Amati and F. Lelj, Monomolecular isomerization processes of aluminum tris(8-hydroxyquinolinate) (Alq3): a DFT study of gas-phase reaction paths, Chemical Physics Letters, vol.363, issue.5-6, pp.451-457, 2002.
DOI : 10.1016/S0009-2614(02)01208-3

Y. Han and S. Lee, Molecular orbital study on the ground and excited states of methyl substituted tris(8-hydroxyquinoline) aluminum(III), Chemical Physics Letters, vol.366, issue.1-2, pp.9-16, 2002.
DOI : 10.1016/S0009-2614(02)01460-4

P. Pullumbi and Y. Bouteiller, Theoretical electronic and vibrational study of AlCO and Al(CO)2 using density functional theory, Chemical Physics Letters, vol.234, issue.1-3, p.107, 1995.
DOI : 10.1016/0009-2614(95)00023-W

P. Pullumbi, Y. Bouteiller, and J. Perchard, A density functional theory study of the alkali metal atom???carbon monoxide interactions: Singularity of the Li atom, The Journal of Chemical Physics, vol.102, issue.14, p.5719, 1995.
DOI : 10.1063/1.469302

M. Alikhani, Y. Hannachi, L. Manceron, and Y. Bouteiller, complexes (M=Li, Na, K): Singularity of the Li atom, The Journal of Chemical Physics, vol.103, issue.23, p.10128, 1995.
DOI : 10.1063/1.469914

A. Almenningen, A Gas Phase Electron Diffraction Investigation of the Molecular Structures of Trimethylaluminium Monomer and Dimer., Acta Chemica Scandinavica, vol.25, p.1937, 1971.
DOI : 10.3891/acta.chem.scand.25-1937

T. Shimanouchi, Tables of molecular vibrational frequencies. Consolidated volume II, Journal of Physical and Chemical Reference Data, vol.6, issue.3, pp.993-1102, 1972.
DOI : 10.1063/1.555560

J. A. Pople, M. Head-gordon, and K. Raghavachari, Quadratic configuration interaction. A general technique for determining electron correlation energies, The Journal of Chemical Physics, vol.87, issue.10, p.5968, 1987.
DOI : 10.1063/1.453520

G. E. Scuseria, H. F. Schaefer, and I. , Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?, The Journal of Chemical Physics, vol.90, issue.7, p.3700, 1989.
DOI : 10.1063/1.455827

A. Schaefer, H. Horn, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to Kr, The Journal of Chemical Physics, vol.97, issue.4, p.2571, 1992.
DOI : 10.1063/1.463096

M. Dolg, Modified version of the program MCHF77 ; Froese-Ficher C, Comput. Phys. Commun, vol.14, p.145, 1978.

J. Wood, . Boring, and . Am, Improved Pauli Hamiltonian for local-potential problems, Physical Review B, vol.18, issue.6, p.2701, 1978.
DOI : 10.1103/PhysRevB.18.2701

D. Andrae, . Haeussermann, . Dolg, H. Stoll, H. Press et al., Energy-adjustedab initio pseudopotentials for the second and third row transition elements, Theoretica Chimica Acta, vol.111, issue.2, p.123
DOI : 10.1007/BF01114537

W. Küchle, M. Dolg, H. Stoll, and H. Preub, pseudopotentials for Hg through Rn, Molecular Physics, vol.270, issue.6, p.1245, 1991.
DOI : 10.1063/1.459823

M. Kaupp and S. Pvr, compounds bent?, The Journal of Chemical Physics, vol.94, issue.2, p.1360, 1991.
DOI : 10.1063/1.459993

A. D. Mclean and G. S. Chandler, =11???18, The Journal of Chemical Physics, vol.72, issue.10, p.5639, 1980.
DOI : 10.1063/1.438980

R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kolmel, Pour plus d'information et la documentation des dernières versions voir le site web, Chem. Phys. Lett, vol.162, issue.165, 1989.

M. Prager, Methyl group rotation in trimethylaluminium, Journal of Physics: Condensed Matter, vol.14, issue.8, pp.1833-1845, 2002.
DOI : 10.1088/0953-8984/14/8/312

D. X. Wang, HeI photoelectron spectroscopic (PES) studies of the electronic structure of Al(CH3)3, In(C2H5)3 and Cd(CH3)2 compounds, Chemical Physics Letters, vol.260, issue.1-2, p.95, 1996.
DOI : 10.1016/0009-2614(96)00812-3

D. X. Wang, X. M. Qian, Y. Z. Shi, and S. Zheng, A HeI photoelectron spectrum of the [Al(CH3)3]2 dimer, Chemical Physics Letters, vol.277, issue.5-6, p.502, 1977.
DOI : 10.1016/S0009-2614(97)00936-6

C. Gonzalez and H. B. Schlegel, Reaction path following in mass-weighted internal coordinates, The Journal of Physical Chemistry, vol.94, issue.14, p.5523, 1990.
DOI : 10.1021/j100377a021

Y. He, J. Grafenstein, E. Kraka, and D. Cremer, What correlation effects are covered by density functional theory?, Molecular Physics, vol.72, issue.20, pp.1639-1658, 2000.
DOI : 10.1016/0009-2614(94)01027-7

J. C. Slater, . Mann, J. Wilson, and . Wood, Nonintegral Occupation Numbers in Transition Atoms in Crystals, Physical Review, vol.184, issue.3, p.672, 1969.
DOI : 10.1103/PhysRev.184.672

J. M. Wittbrodt and H. Schlegel, Some reasons not to use spin projected density functional theory, The Journal of Chemical Physics, vol.105, issue.15, p.6574, 1996.
DOI : 10.1063/1.472497

J. D. Goddard and G. Orlova, Density functional theory with fractionally occupied frontier orbitals and the instabilities of the Kohn???Sham solutions for defining diradical transition states: Ring-opening reactions, The Journal of Chemical Physics, vol.111, issue.17, p.7705, 1999.
DOI : 10.1063/1.480108

L. Jeloaica, Benchmark calculations for structural and dynamical properties of ALD precursor molecules

A. Dkhissi, L. Adamowicz, and G. Maes, O Complex:?? A Comparison with RHF and MP2 Methods and with Experimental Data, The Journal of Physical Chemistry A, vol.104, issue.10, p.2112, 2000.
DOI : 10.1021/jp9938056

R. A. Kendall, T. H. Dunning-jr, and R. J. Harrison, Electron affinities of the first???row atoms revisited. Systematic basis sets and wave functions, The Journal of Chemical Physics, vol.96, issue.9, p.6796, 1992.
DOI : 10.1063/1.462569

D. E. Woon, T. H. Dunning, and J. , Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon, The Journal of Chemical Physics, vol.98, issue.2, p.1358, 1993.
DOI : 10.1063/1.464303

A. W. Ott, Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry, Thin Solid Films, vol.292, issue.1-2, p.135, 1997.
DOI : 10.1016/S0040-6090(96)08934-1

L. Jeloaica, New insights into the TMA, ZrCl 4 and HfCl 4 interactions with water: Applications to controlling medium-and high-k oxides atomic layer deposition

O. Sneh, R. B. Clark-phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, Thin film atomic layer deposition equipment for semiconductor processing, Thin Solid Films, vol.402, issue.1-2, p.248, 2002.
DOI : 10.1016/S0040-6090(01)01678-9

K. S. Pitzer, The Molecular Structure and Thermodynamics of Propane The Vibration Frequencies, Barrier to Internal Rotation, Entropy, and Heat Capacity, The Journal of Chemical Physics, vol.12, issue.7, pp.310-314, 1944.
DOI : 10.1063/1.1723944

K. S. Pitzer and W. D. Gwinn, Energy Levels and Thermodynamic Functions for Molecules with Internal Rotation I. Rigid Frame with Attached Tops, The Journal of Chemical Physics, vol.10, issue.7, pp.428-440, 1942.
DOI : 10.1063/1.1723744

P. Y. Ayala and H. B. Schlegel, A nonorthogonal CI treatment of symmetry breaking in sigma formyloxyl radical, The Journal of Chemical Physics, vol.108, issue.18, p.7560, 1998.
DOI : 10.1063/1.476190

V. Hnizdo, A. Fedorowicz, H. Singh, and E. Demchuk, Statistical thermodynamics of internal rotation in a hindering potential of mean force obtained from computer simulations, Journal of Computational Chemistry, vol.89, issue.10, pp.1172-1183, 2003.
DOI : 10.1002/jcc.10289

V. Van-speybroeck, Ab Initio Study of Radical Addition Reactions: Addition of a Primary Ethylbenzene Radical to Ethene (I), The Journal of Physical Chemistry A, vol.104, issue.46, pp.10939-10950, 2000.
DOI : 10.1021/jp002172o

P. Vansteenkiste, V. Van-speybroeck, G. B. Marin, and M. Waroquier, -Alkanes Using Internal Rotations, The Journal of Physical Chemistry A, vol.107, issue.17, pp.3139-3145, 2003.
DOI : 10.1021/jp027132u

URL : https://hal.archives-ouvertes.fr/hal-00787136

G. Katzer and A. F. Sax, Beyond the Harmonic Approximation:?? Impact of Anharmonic Molecular Vibrations on the Thermochemistry of Silicon Hydrides, The Journal of Physical Chemistry A, vol.106, issue.31, pp.7204-7215, 2002.
DOI : 10.1021/jp0257810

M. M. Frank and Y. J. , Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides, Applied Physics Letters, vol.82, issue.26, p.4758, 2003.
DOI : 10.1063/1.1585129

M. Sierka and J. Sauer, Finding transition structures in extended systems: A strategy based on a combined quantum mechanics???empirical valence bond approach, The Journal of Chemical Physics, vol.112, issue.16, p.6983, 2000.
DOI : 10.1063/1.481296

T. Helgaker, Transition-state optimizations by trust-region image minimization, Chemical Physics Letters, vol.182, issue.5, p.503, 1991.
DOI : 10.1016/0009-2614(91)90115-P

L. Jeloaica, A. Estève, M. R. Djafari, and D. Estève, atomic layer deposition, Applied Physics Letters, vol.83, issue.3, p.542, 2003.
DOI : 10.1063/1.1587261

Y. Widjaja and C. B. Musgrave, Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition, Applied Physics Letters, vol.80, issue.18, p.3304, 2002.
DOI : 10.1063/1.1473237

V. V. Brodskii, E. A. Rykova, A. A. Bagatur-'yants, and A. Korkin, Modelling of ZrO2 deposition from ZrCl4 and H2O on the Si(100) surface: initial reactions and surface structures, Computational Materials Science, vol.24, issue.1-2, p.278, 2002.
DOI : 10.1016/S0927-0256(02)00192-1

M. D. Hall and K. Raghavachari, on Si(100)-2??1, The Journal of Physical Chemistry B, vol.108, issue.13, p.4058, 2004.
DOI : 10.1021/jp0378079

H. Siimon and J. Aarik, Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors, Journal of Physics D: Applied Physics, vol.30, issue.12, p.1725, 1997.
DOI : 10.1088/0022-3727/30/12/006

R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, Journal of Applied Physics, vol.97, issue.12, p.121301, 2005.
DOI : 10.1063/1.1940727

D. Résuméaluminium, . Zirconium, and . De-hafnium, Ces matériaux sont considérés des candidats très prometteurs pour remplacer la silice en tant qu'oxyde de grille dans les futurs composants CMOS. La précision et la fiabilité de la méthode DFT associée à la fonctionnelle B3LYP, ont été testées à l'aide des résultats expérimentaux et des méthodes ab initio les plus précises telles que CCSD(T) et CISD(T), en utilisant différents ensembles de fonctions de bases. Nos résultats montrent que la méthode hybride DFT peut prédire de façon précise les propriétés structurales et vibrationnelles de la famille d'organométalliques (Al x C y H z O t ) et des systèmes moléculaires à base de métaux de transition (Zr/Hf x Cl y O z H t ) Les premières études systématiques des surfaces d'énergie potentielle de TMA ont été présentées et les caractéristiques des rotors constitués des groups méthyles ont été rapportées avec une grande précision. Des mécanismes réactionnels, à plusieurs étapes, entre les molécules précurseurs de chacun des trois oxydes et les molécules d'eau résiduelle dans la phase gazeuse du réacteur ALD, ont été étudies en détail. Les mouvements internes fortement anharmoniques des espèces moléculaires présentes tout au long du processus d'hydrolyse ont été déterminés. Les effets qualitatifs sur les cinétiques des réactions ont été discutés également. La forte exothermicité de la réaction TMA/H 2 O a été démontrée, alors que les réactions avec les tétrachlorures de Zirconium et Hafnium ont montré un caractère plutôt endothermique. Nous avons aussi étudié les mécanismes réactionnels de la vapeur d'eau avec des espèces moléculaires chimisorbées en surface. Les réactions interviennent dans les premiers cycles d'ALD sur un substrat de Si(001)-2x1 légèrement oxydé. Les mécanismes que nous proposons sont qualitativement proches des mécanismes d'hydrolyse discutés dans la phase gazeuse : confirmation de la forte réactivité exothermique avec les hydroxyméthyles d'Aluminium, endothermicité des réactions avec hydroxychlorures de Zirconium et Hafnium. Les composés avec le Zirconium et le Hafnium ont des comportements similaires. Enfin, les effets de coopérativité ces effets sont de moindre importance dans le cas de l'oxyde d'aluminium, qui est considéré actuellement comme le matériau le plus compatible avec la technologie actuelle de croissance par ALD

. Abstract, Zirconia and Hafnia ALD growth, yet not sufficiently understood These materials are addressed as potentially promising candidates to replace gate dielectric SiO 2 in the near future electronic applications Most accurate ab initio correlated methods, like couple-cluster CCSD(T) and CISD(T), with different basis sets functions, as well as the available experimental data have been used for testing by a systematic study the accuracy and the reliability of DFT B3LYP functional. Our results have claimed this hybrid-DFT method to be chosen in predicting of high accurate structural and vibrational properties throughout the family of organometallic-like (Al x C y H z O t ) and transition metalbased (Zr/Hf x Cl y O z H t ) molecular systems. First systematic study of torsional potential surfaces of TMA has been performed and the related features of the hindered rotors of the methyl groups revealed with high accuracy. Many-step reaction mechanisms of ALD gas phase precursors of each of the three oxides with residual water, or regime of low pressure H 2 O-ALD pulses, have been studied in detail. Strong anharmonic internal movements of molecular species throughout the hydrolysis reactions have been observed and qualitatively discussed in relation with their possible effects on the reactions' kinetics, TMA/H 2 O reactions have been validated as strongly exothermic, while Hafnium and Zirconium tetrachlorides have founded to react endothermically with single H 2 O molecule. We have also studied in detail reaction mechanisms of the related on-surface ALD-complexes with water vapors