Water-rock interaction during CO2 sequestration in basalt - Université Toulouse III - Paul Sabatier - Toulouse INP Accéder directement au contenu
Thèse Année : 2009

Water-rock interaction during CO2 sequestration in basalt

Étude de l'interaction eau-basalte lors de l'injection de CO2

Résumé

The potential dangers with increased concentration of CO2 in the atmosphere, such as climate changes and sea level rise, have lead to an interest in CO2 sequestration in geological formations. The thermodynamically most stable way to store carbon is as carbonate minerals. Carbonate mineral formation, however, requires divalent cations originating from a non-carbonate source. One such source is basaltic rocks which contain high concentrations of Ca2+, Mg2+ and Fe2+. The potential for forming carbonate minerals through the injection of CO2 into basalt is under investigation in Iceland and several other places around the world. The aim of this thesis is to help optimize carbonate mineral precipitation in basalts during CO2 injection through a series of related field and laboratory studies.
A detailed study of the chemical composition of the groundwater surrounding the Mt. Hekla volcano in south Iceland was performed to assess fluid evolution and toxic metal mobility during CO2-rich fluid basalt interaction. These fluids provide a natural analogue for evaluating the consequences of CO2 sequestration in basalt. The concentration of dissolved inorganic carbon in these groundwaters decreases from 3.88 to 0.746 mmol/kg with increasing basalt dissolution while the pH increases from 6.9 to 9.2. This observation provides direct evidence of the potential for basalt dissolution to sequester CO2. The concentrations of toxic metals in these waters are low and reaction path modeling suggests that calcite and Fe(III) (oxy)hydroxides scavenge these metals as the fluid phase is neutralized by further basalt dissolution.
The rate limiting step for mineralization of CO2 in basalt is thought to be the release of divalent cations to solution through basaltic glass dissolution. The dissolution rate of basaltic glass can be increased by adding ligands which complex aqueous Al3+. Aqueous SO42- can complex Al3+ and the effect of SO42- on the dissolution rate of basaltic glass was studied using mixed flow reactors at 3 < pH < 10 at 50 °C. Moreover, sulphur is often present in the flue gases of power plants and their disposal also poses an environmental challenge. If possible, co-injection of sulfur with CO2 could provide a novel cost effective disposal method for industrial generated sulphur. Consistent with current models describing basaltic glass dissolution by aqueous solution composition, results show that SO42- increases the dissolution rate of the glass in acidic conditions, while no effect was found in alkaline solutions. These results suggest both that 1) co-injection of sulfate may accelerate CO2 mineralization in basalts, and 2) existing kinetic models provide an accurate description of basaltic glass dissolution.
To further assess the potential effect of SO42- on the precipitation rate of carbonates, steady-state rates of calcite precipitation were measured in mixed flow reactors at 25 °C and pH ~9.1. The results show that 0.005 M Na2SO4 decreases the precipitation rate of calcite by ~40%. This result suggests that co-injected sulphate could slow calcite precipitation in the subsurface at pH conditions typical of calcite precipitation. Further experiments are planned to completely define these effects at conditions expected at subsurface CO2 injection sites.
Les dangers potentiels liés à l'augmentation de la teneur en CO2 de l'atmosphère, tels que les changements climatiques ou l'élévation du niveau des mers, ont provoqué un grand intérêt pour la séquestration du gaz carbonique dans les formations géologiques. Le moyen thermodynamiquement le plus sûr pour stocker le carbone est sous la forme de minéraux carbonatés, mais il exige une source de cations divalents qui ne soit pas carbonatée. Les roches basaltiques qui présentent de fortes teneurs en calcium, magnésium et fer peuvent être une de ces sources et la possibilité de former des minéraux carbonatés par injection de CO2 dans les roches basaltiques est en cours d'investigation en Islande et dans d'autres endroits du monde. Dans ce cadre, l'objectif de cette thèse est de contribuer à l'optimisation de la précipitation des carbonates dans les basaltes lors de l'injection de CO2 grâce à une série d'études de terrain et de laboratoire complémentaires.
Une étude détaillée de la composition chimique des eaux souterraines au pied du volcan Mont Hekla, dans le sud de l'Islande, a d'abord été menée afin d'évaluer l'évolution chimique des fluides et la mobilité des métaux toxiques lors des interactions entre basalte et fluides riches en CO2. Ces fluides fournissent un analogue naturel pour estimer les conséquences de la séquestration du CO2 dans les basaltes. La teneur de ces fluides en carbone inorganique dissous diminue de 3,88 à 0,746 mmole/kg avec l'augmentation de la mise en solution du basalte tandis que le pH passe de 6,9 à 9,2. Ces observations fournissent une preuve directe du potentiel qu'offre la dissolution du basalte pour séquestrer le CO2. Les concentrations des métaux toxiques dans ces eaux sont faibles et la modélisation des chemins réactionnels suggère que la calcite et les (oxy)hydroxydes de fer piègent ces métaux, suite à l'alcalinisation des fluides induite par la dissolution continue du basalte.
On sait que ce sont les cations divalents libérés par la dissolution du verre basaltique qui contrôlent la minéralisation du gaz carbonique dans les basaltes. La vitesse de dissolution du verre basaltique peut être accrue par l'addition de ligands qui se complexent avec Al3+. L'ion SO42- fait partie de ces ligands et l'étude de son impact sur la vitesse de dissolution du verre basaltique a été conduite dans des réacteurs de type ‘mixed flow' à 50°C et 3 < pH < 10. Le soufre est souvent présent dans les gaz émis par les centrales électriques et son stockage constitue un challenge environnemental. La co-injection avec CO2, si elle est réalisable, peut donc constituer une nouvelle méthode peu couteuse de stockage du soufre généré par l'industrie. En accord avec les modèles actuels décrivant la cinétique de dissolution du verre basaltique en fonction de la composition de la solution aqueuse, les résultats de ce travail montrent que SO42-augmente la vitesse de dissolution du verre aux conditions acide mais qu'il n'a aucun effet aux pH alcalins. Ces résultats suggèrent à la fois que 1) la co-injection de sulfate peut accélérer la minéralisation du CO2 dans les basaltes et 2) les modèles cinétiques existant permettent une description précise de la dissolution du verre basaltique.
Afin d'évaluer plus précisément l'impact des ions sulfates sur la vitesse de précipitation des carbonates, la vitesse de précipitation de la calcite en régime stationnaire a été mesurée dans des réacteurs à circulation ‘mixed flow' à 25°C et pH ~9.1. Les résultats montrent qu'en présence de 0.005 M de Na2SO4 la vitesse de précipitation de la calcite est diminuée d'environ 40% et qu'ainsi la co-injection de sulfate peut ralentir la précipitation de la calcite aux pH typiques de la précipitation de ce minéral en subsurface. Des expériences supplémentaires sont prévues pour caractériser définitivement l'effet du sulfate aux conditions attendues aux sites d'injection du CO2 en subsurface.
Fichier principal
Vignette du fichier
FlaathenThese1.pdf (18.93 Mo) Télécharger le fichier
Loading...

Dates et versions

tel-00421959 , version 1 (05-10-2009)

Identifiants

  • HAL Id : tel-00421959 , version 1

Citer

Therese Kaarbø Flaathen. Water-rock interaction during CO2 sequestration in basalt. Hydrology. Université Paul Sabatier - Toulouse III, 2009. English. ⟨NNT : ⟩. ⟨tel-00421959⟩
461 Consultations
1760 Téléchargements

Partager

Gmail Facebook X LinkedIn More